logo
Скопичев В

4.2.4. Антитела

Антителам присущи следующие основные биологические

свойства.

1. Специфичность — способность Ig реагировать только с определенным антигеном, что обусловлено наличием у них ан­тидетерминант, контактирующих с соответствующими детер­минантами.

2 Валентность — количество антидетерминант в молекуле ан­титела. Чаще всего антитела бивалентны, но существуют 5- и даже 10-валентные.

3. Аффинность, аффинитет — прочность соединения между де­терминантами (эпитопом) антигена и антидетерминантами (пара-топом) антигена.

4 Авидность — прочность связи антигена с антителом, ълаго-даря поливалентности антигена связь между двумя антигенами осуществляется при помощи нескольких антител.

5. Гетерогенность — неоднородность, обусловленная наличием трех видов антигенных детерминант:

A. Изотипические, характеризующие принадлежность Ig к оп­ ределенному классу;

Б. Аллотипические, соответствующие аллельным вариантам иммуноглобулина;

B. Идиотипические, отражающие индивидуальные особеннос­ ти иммуноглобулина.

Организм способен реагировать на поступление чужеродных антигенов синтезом белков, обладающих специфическим срод-

157

ством с антигеном, вызвавшим этот синтез. Эти белки получили название антител. Хотя антитела отличаются друг от друга не только по способности связывать разные антигены, но и по своим физико-химическим свойствам, структурно все они сходны. Эта высокоспециализированная группа белков, построенных из поли-пептидных цепей двух основных типов (легких и тяжелых), полу­чила название иммуноглобулинов.

Иммуноглобулины синтезируются в пузырьках пластинчато­го аппарата (Гольджи) В-лимфоцитов. По мере созревания пузы­рек подходит к поверхности клетки, при контакте с ней происхо­дит разрыв наружной мембраны клетки и мембраны пузырька. Свободные иммуноглобулины поступают в плазму, а связанные с мембраной остаются на поверхности клетки. Таким образом, итоговой фазой В-клеточного иммунитета является продукция /g-антител, которая происходит постоянно. Одновременно в орга­низме синтезируются до 105... 107 антител различной специфично­сти. Интактный В-лимфоцит синтезирует в один час примерно 250...500 молекул IgM и большую часть их отдает в экстрацеллю-лярную жидкость. После специфической антигенной стимуляции и трансформации лимфоцитов в плазматические клетки этот син­тез возрастает в тысячи раз.

Наиболее полно изучено строение антител, представленных иммуноглобулинами класса G (рис. 4.5).

На схеме видно, что молекула IgG под действием протеолити-ческого фермента папаина расщепляется на три больших фраг­мента. Два из них идентичны и обладают свойством взаимодей­ствовать с одной молекулой антигена. Они были обозначены как Fab-фрагменты (Fragment antigen binding), связывающие антиген.

Гипервариабельные участки легкой цепи Лёгкая м цепь

(Связывание _ антигена) F°°


Гипервариабельные

участки тяжелой

цепи


Межцепьевые

" дисульфитные

связи


Шарнирная область

Участок связывания

комплемента Углевод


(Эффекторные I биологические Fc


функции)


Внутрицепьевые

дисульфидные

связи


VL и Vfj: вариабельные области Ci и Сн'- константные области


Рис. 4.5. Структура молекулы иммуноглобулина G


Тяжёлая цепь v*v /^Тяжелая цепь

Третий фрагмент, содержащий углеводный компонент, был полу­чен при изучении его свойств в кристаллическом состоянии, за что и назван Fc-фрагментом (Fragment cristalline). В дальнейшем было показано, что Fc-фрагмент взаимодействует с мембранами клеток, выполняя транспортную функцию, фиксацию Cql компо­нента комплемента и т. д.

Все иммуноглобулины — это тетрамеры, состоящие из четырех полипептидных цепей. Две из них представлены длинными (около 450 аминокислотных остатков), или тяжелыми (heavy), Н-цепями, а две другие — короткими (около 220 аминокислотных остатков), или легкими (light), L-цепями. Легкие цепи являются общими для всех классов и подклассов иммуноглобулинов и могут произ­вольно сочетаться с любой тяжелой цепью. У большинства позво­ночных легкие цепи разделяются по антигенным свойствам на два типа — «каппа» (с-тип) и «лямбда» (1-тип).

Изучение первичной структуры полипептидных цепей иммуно­глобулинов показало, что N-концевые участки тяжелых и легких цепей, включающие около 100 аминокислотных остатков, обладают уникальной структурой и аминокислотной последовательностью. Они представляют собой вариабельные области (V-область) тяже­лых (VH) и легких (VL) цепей. Указанные вариабельные области, с одной стороны, образуют антигенсвязывающие центры антител, а с другой — определяют их многообразие. Остальная (С-концевая) последовательность тяжелой и легкой цепей идентична у всех молекул данного класса или подкласса, но различна у молекул, от­носящихся к разным классам и подклассам. Она носит название константная область (С-область). В зависимости от структуры константной области тяжелых цепей молекулы иммуноглобулинов делят на классы. В настоящее время известно пять классов иммуно­глобулинов, обозначаемые как IgA, IgM, IgG, IgD и IgE. Тяжелые цепи иммуноглобулинов каждого класса различаются по своим фи-шко-химическим, антигенным и иммунологическим свойствам. Эти цепи обозначаются греческими буквами в соответствии с ла­тинским обозначением класса иммуноглобулинов: IgA (а-цепь), IgM (m-цепь), IgG (g-цепь), IgD (d-цепь) и IgE (е-цепь).

В N-концевой части Н- и L-цепей иммуноглобулинов имеются участки, отличающиеся чрезвычайно высокой вариабельностью (гипервариабельные участки): HI; Н2; НЗ; LI; L2; L3. Каждый из них содержит около шести аминокислотных остатков. Вместе эти участки образуют антигенсвязывающий центр.

Цепи иммуноглобулинов состоят из доменов — структурных единиц, содержащих около 110 остатков аминокислот. Тяжелые цепи образуют четыре домена: один вариабельный и три кон­стантных, обозначаемые Сн1; Сц2; СцЗ. Легкие цепи содержат но два домена — вариабельному (VL) и константному (Q,). Каж­дый домен представляет собой плотно упакованную глобулу, так как аминокислотные последовательности обладают определенным

158

159

сходством друг с другом. И эти участки полипептидной цепи замыкаются внутрицепочной дисульфидной связью.

Каждый из Fab-фрагментов состоит из одной L-цепи (VL- и CL-домены) и половины одной Н-цепи (VH- и Сн-Домены), а Fc-фрагмент образован остатками двух Н-цепей, включающих Сн2 и Сн3 домены.

Классы иммуноглобулинов различаются по своим химическим и биологическим свойствам. Так, их различная скорость полимериза­ции выражается в том, что /gG существуют в виде мономера с моле­кулярной массой 160 000, тогда как IgA состоит из одной или двух, а IgM, как правило, из пяти соответствующих субъединиц.

Биологические и иммунологические различия между классами иммуноглобулинов имеют большое практическое значение, так как они обусловливают характер реакции, следующей за образова­нием комплекса антиген — антитело.

Защитное действие антител может выражаться в прямом по­вреждении микроорганизмов или в нейтрализации синтезируемо­го ими токсина. Нейтрализация токсина состоит в прямой блокаде токсофорной группы антителами (антигенные и токсинные детер­минанты идентичны). Однако связывание токсина и антитела мо­жет вызывать и пространственные изменения конфигурации, ко­торые делают невозможной адсорбцию токсина на субстрате — клетке, чувствительной к токсину.

Иммуноглобулины класса G оказывают сильное нейтрали­зующее действие на токсины и вирусы, а также способны к пре­ципитации, обладают опсонизирующим действием (опсонины — греч. Opsonion — снабжение пищей — антитела, в присутствии комплемента стимулирующие поглощение чужеродных частиц, бактерий, вирусов и их разрушение лейкоцитами), усиливая фа­гоцитоз. При умеренном нагревании IgG может связываться с антителом, т. е. начинается реакция, названная связыванием ком­племента, ответственность за которую несет Fc-фрагмент. При этом кроме непосредственной нейтрализации вирусов и токсинов IgG способствуют также зависящему от комплемента фагоцитозу и внутриклеточной инактивации микроорганизмов. На долю IgG приходится около 80 % всех иммуноглобулинов.

Более сложной, чем при нейтрализации токсинов, представ­ляется роль антител в разрушении и устранении самого возбу­дителя. У некоторых грамотрицательных бактерий антитела в связи с неспецифически реагирующими факторами комплемента сыворотки могут вызывать бактериолиз. Антитела и комплемент, однако, не вызывают цитолиз непосредственно, а лишь изменя­ют вначале поверхность бактериальной клетки таким образом, что она становится доступной действию имеющегося в организ­ме фермента лизоцима. Лизоцим реагирует с мурамилпептидом клеточной стенки и вызывает разрыв в одном или нескольких местах поверхности. Повышение давления внутри клетки, дохо-

дящее до 20 ати, приводит к тому, что микроорганизм с повреж­денной стенкой лопается.

Другой путь возможного действия антител — опсонизация за­ключается в изменении поверхности микробной клетки таким образом, что она становится более удобной для поглощения ее фагоцитами. Как и бактериолиз, опсонизация протекает на фо­не активации комплемента, вызванной реакцией антиген — анти­тело. В отличие от цитолиза, требующего для своего осуществле­ния присутствия на бактериальной клетке всех девяти факторов комплемента, в опсонизации участвуют только четыре компонен­та комплемента Q...C4.

Особенно выражено опсонизирующее действие антител при колиинфекции новорожденных домашних животных. Большое значение имеют опсонизирующие антитела и для защиты против диплококков и стрептококков. Гладкая поверхность капсулы у диплококков мешает их поглощению фагоцитами. Лишь когда под действием антител их поверхность меняется, т. е. становится шероховатой, они могут быть фагоцитированы и затем уничтоже­ны внутри клетки. Стрептококки поддаются фагоцитозу даже при отсутствии специфических антител, но из-за присутствия особого белка, названного М-антигеном, инактивируются не полностью. Часть их снова выходит из фагоцитов и продолжает размножаться дальше. Антитела, направленные против М-антигена патогенного типа стрептококков, способствуют внутриклеточной инактивации этих микроорганизмов.

Ведущее место в реакциях бактериолиза и опсонизации принадлежит IgM. Этот класс иммуноглобулинов является са­мым «древним» в филогенети­ческом отношении. В ходе им­мунного ответа вначале также появляются антитела /gM-клас-са. У новорожденных первые ан­титела принадлежат к IgM. В сы­воротке молекулы IgM сущест­вуют в виде пентамера с моле­кулярной массой 950000. Пять мономерных субъединиц рас­положены радиально, причем Fc-фрагменты направлены к цен­тру круга, а Fab-фрагменты — кнаружи (рис. 4.6).

Поскольку IgM в полной ме­ре не способны к нейтрализации

токсинов, то животные раннего p„c 4.6. Строение пентамерной структу- постнатального периода наибо- ры иммуноглобулина м

160

11 — 3389

161

лее подвержены токсикоинфекциям. IgM составляют примерно 3...10 % иммуноглобулинов сыворотки крови.

Характерная особенность структуры IgM определяется тем, что она призвана оказывать особое защитное действие против микро­организмов и других крупных антигенов, имеющих на своей по­верхности антигенную мозаику из повторяющихся детерминантов. Антитела IgM связывают соответствующий антиген каждым из сво­их пяти участков связывания. Такие повторы антигенных детерми­нантов характерны для О-антигенов из клеточной стенки грамот-рицательных бактерий, жгутиков бактерий и вирусов, имеющих капсиды. Даже если каждый отдельный участок связывания прояв­ляет лишь небольшую авидность, общая авидность всей молекулы повышается из-за суммирования нескольких таких связей.

Если антитела IgM реагируют таким образом с антигеном, то при нахождении антигена близко к поверхности клетки компле­мент настолько активируется, что вызывает локализованное по­вреждение нижележащей клеточной мембраны. Так, единственная молекула IgM в силу активирования комплемента может вызвать лизис клетки (например, бактерии или эритроцита). Антитела класса IgG, напротив, могут вызвать клеточный лизис путем ак­тивирования комплемента только в том случае, когда две молеку­лы антитела вступают в реакцию на поверхности клетки очень близко друг от друга, но для этого необходимо очень много (тыся­чи) молекул IgG.

Если антиген не связан с поверхностью клетки, а существует в свободном виде с множеством детерминантов, то антитела IgM не имеют никаких преимуществ перед IgG- Напротив, их участки связывания, характеризующиеся низкой авидностью, не могут все связываться с одной и той же молекулой антитела и легко диссо­циируют. Поэтому антитела IgG более эффективны при нейтрали­зации бактериальных токсинов и при защите клеток от адсорбиро­вания на них вируса.

Сравнение активности антител IgG и IgM по отношению к од­ному и тому же поверхностному антигену сальмонелл показало, что на основе соотношения масс последние в 20 раз активнее при агглютинации [лат. agglutinatio — склеивание в глыбки (комочки) микробов, эритроцитов или других клеток и выпадение их в оса­док в присутствии электролитов] сальмонелл, более чем в 100 раз активнее в инактивации микробной клетки с участием компле­мента и более чем в 1000 раз эффективнее в опсонизации микро­организмов и других клеток.

Сывороточные антитела IgA в отличие от IgM и IgG не способ­ны к связыванию комплемента и поэтому не могут вызывать ни иммуноприлипания, ни цитолиза или конглютинации. Считают, что этому классу иммуноглобулинов принадлежит функция защи­ты организма от проникновения возбудителя и развития инфек­ции. Этот класс иммуноглобулинов участвует в элиминации пи-

щевых и других чужеродных антигенов, которые могут проник­нуть в организм через слизистые оболочки, а также в регуляции иммунного ответа на эти антигены.

Иммуноглобулины А составляют лишь 10...15 % всех иммуноглобулинов сыворотки. Однако они преобладают в экстра-васкулярных секретах. Большая часть IgA в слюне, слезах, пище­варительных соках, секретах слизистой носа находится в виде се­креторного IgA (SIgA), т. е. полимерной формы, состоящей из двух /gA-мономеров, соединяющей молекулы гликопротеина, называе­мого секреторным компонентом. Биологическая роль секреторного компонента сводится к повышению устойчивости IgA от разруше­ния протеолитическими ферментами (рис. 4.7).


Рис. 4.7. Схема строения секреторного иммуноглобулина А


Иммуноглобулин ыЕ — это мономеры, содержание ко­торых в сыворотке крови ничтожно мало — 0,00005...0,0003 г/л, или 0,002 % общего количества Ig. За сутки их синтезируется 0,02 мг/кг; период полураспада в сыворотке крови составляет 2...3 сут, а в коже — 9...14сут. К классу IgE относится основная масса аллергических антител-реагинов. Уровень их значительно повышается у организ­мов, страдающих аллергией и зараженных гельминтами. IgE свя­зываются с Fc-рецепторами тучных клеток и базофилов. При кон­такте с аллергеном образуются мостики IgE — антиген — IgE, что сопровождается поступлением ионов кальция в клетку-ми­шень, активацией в ней биохимических процессов и выделением биологически активных веществ, вызывающих аллергические ре­акции немедленного типа. Эозинофильный хемотаксический фак­тор, выделяемый тучными клетками, способствует аккумуляции

162

163

эозинофилов и деструкции гельминтов. Предполагается также, что IgE, покрывая паразита, аккумулирует макрофаги благодаря Fc-рецепторам этих клеток.

Иммуноглобулины D — это мономеры; их содержание в крови составляет 0,03...0,04 г/л, или до 1 % общего количества иммуноглобулинов. В сутки их синтезируется от 1 до 5 мг/кг, а период полураспада колеблется в пределах 2...8 сут. IgD участвуют в развитии местного иммунитета, обладают антивирусной актив­ностью, в редких случаях активируют комплемент. Плазматичес­кие клетки, секретирующие IgD, локализуются преимущественно в миндалинах и аденоидной ткани. IgD выявляются на В-клетках, отсутствуют на моноцитах, нейтрофилах и Т-лимфоцитах. Пола­гают, что IgD участвуют в дифференцировке В-клеток, способ­ствуют развитию антиидиотипического ответа, участвуют в ауто­иммунных процессах.

Основная масса IgM и IgD находится в плазме, a IgG и IgA рас­пределяются примерно в одинаковых соотношениях между плаз­мой и межсосудистой тканью.