12.5. Надпочечники
Надпочечник — парный эндокринный орган, состоящий фактически из двух самостоятельных желез: коры и мозгового вещества, т. е. разнородных эндокринных компонентов, имеющих различное происхождение и продуцирующих различные гормоны. Адренокортикоциты — железистые клетки коры надпочечника секретируют стероидные гормоны, а хромафинные клетки —
512
33 — 3389
513
клетки мозгового вещества синтезируют катехоламины адреналин и норадреналин.
Кора надпочечников. Кора надпочечника состоит из трех ясно выраженных зон: клубочковой, пучковой и сетчатой.
Клубочковая зона. Располагается непосредственно под соединительнотканной капсулой надпочечника и представлена изогнутыми тяжами адренокортикоцитов, составляющими 4...6 рядов. Адренокортикоциты клубочковой зоны имеют удлиненную форму и эксцентрически расположенное округлое ядро, а также ли-пидные включения, сосредоточенные в одном из полюсов клетки. Липидные включения (липосомы) тесно контактируют с митохондриями и каналами эндоплазматического ретикулума. Каналы эн-доплазматического ретикулума обычно не несут на своей поверхности рибосом. Свободные рибосомы, собранные в розетки, располагаются в цитоплазме между пузырьками ретикулума и липосомами. Комплекс Гольджи хорошо развит и представлен параллельно ориентированными ламеллами, небольшими вакуолями и микропузырьками. Вблизи комплекса Гольджи располагаются плотные тельца, по своей организации соответствующие лизосомам.
Эндокринные клетки клубочковой зоны являются местом образования стероидных гормонов, называемых минералокортико-идами за их влияние на минеральный и водный обмен. Действие этих гормонов реализуется в почках, где они стимулируют реабсорбцию ионов натрия и хлора, тормозят реабсорбцию ионов калия, магния, водорода и аммония в канальцах. К минералокорти-коидам относятся альдостерон и l-дезоксикортикостерон, которые обеспечивают задержку в организме натрия и выведение калия, а также поддерживают ионный и осмотический гомеостаз. Альдостерон в основном повышает проницаемость для натрия клеточной мембраны эпителия, обращенной в просвет канальца, тем самым облегчая проникновение этого иона в клеточное пространство и делая его более доступным для транспортной системы натрий-калиевой помпы, локализованной в базолатеральной мембране клетки. Таким образом, альдостерон регулирует солевой и водный обмен: обеспечивает усиленный переход натрия из клеток в тканевую жидкость, а затем воды по осмотическому градиенту, в результате этого увеличивается объем тканевой жидкости и плазмы крови, возрастает клубочковая фильтрация и из организма выделяется значительное количество воды. Альдостерон выступает как антагонист вазопрессина. Секреция альдостерона стимулируется за счет усиления образования ренина юкстагломерулярным аппаратом почки. Напротив, увеличение содержания в крови натрия тормозит выделение из надпочечников альдостерона.
Пучковая зона. Морфологический переход клубочковой зоны в пучковую происходит постепенно и проявляется в уменьшении числа внутриклеточных липидных включений. Адренокортикоциты этой зоны располагаются радиальными тяжами,
отграниченными кровеносными капиллярами и соединительнотканными септами. Клетки пучковой зоны несколько крупнее клеток клубочковой зоны и имеют угловатую форму. На поверхности клеток, обращенной к перикапиллярному пространству, находится значительное количество микроворсинок. Клетки этой зоны содержат многочисленные митохондрии, во внутреннем пространстве которых от внутренней митохондриальной мембраны могут отпочковываться везикулы, заполняющие митохондриальное пространство. Кроме этого в митохондриях присутствуют кристаллоиды, состоящие из скоплений плотно упакованных трубочек, предположительно принимающих участие в стероидогенезе. Эндоплазматический ретикулум клеток пучковой зоны представлен короткими уплощенными канальцами или округлыми пузырьками, не несущими на своей поверхности рибосом и тесно связанными с митохондриями и липосомами.
В пучковой зоне надпочечников образуются стероидные гормоны, называемые глюкокортикоидами, так как они преимущественно регулируют углеводный и белковый обмен. К глюкокор-тикоидам относятся гидрокортизон (кортизол), кортизон, корти-костерон, причем существуют видовые различия в продукции кортикостероидов. У обезьян, овец и морских свинок образуется в основном гидрокортизон; у мышей, крыс, кроликов и птиц — кортикостерон, а у крупного рогатого скота, свиней, собак и кошек — оба эти гормона. Из кортизола у млекопитающих может образовываться вне надпочечников некоторое количество кортизона. В крови гидрокортизон быстро связывается с альфа-глюко-протеином (транскортином) и сывороточным альбумином. Связанный с транскортином гидрокортизон физиологически не активен, и лишь достигая ткани мишени и освободившись от белка-носителя, реализует свое действие.
Глюкокортикоиды обеспечивают превращение белков в углеводы, активируя процессы глюконеогенеза. Усиливается распад белков, стимулируется окислительное дезаминирование аминокислот с образованием пировиноградной кислоты и превращением ее в глюкозо-6-фосфат или глюкозо-1-фосфат. Это вызывает повышение содержания глюкозы в крови и увеличение запасов гликогена в печени. Введение больших доз глюкокортикоидов значительно уменьшает количество белка в мышечной и соединительной ткани, а также в плазме крови. При этом усиливается выведение азота с мочой и азотистый баланс становится отрицательным. Глюкокортикоиды тормозят превращение углеводов в жиры, а при недостатке глюкозы обеспечивают мобилизацию жира из депо и его быстрое использование для обеспечения энергетических процессов. В почках глюкокортикоиды уменьшают реабсорбцию глюкозы, что ведет к снижению почечного порога для глюкозы и ее выведению с мочой — развивается глюкозурия (своеобразная форма стероидного сахарного диабета).
514
33*
515
Особого внимания заслуживает способность глюкокорти-коидов проявлять противовоспалительное действие — практически угнетать все проявления воспалительной реакции: уменьшается экссудация, снижается проницаемость капилляров, тормозится миграция лейкоцитов и ослабляется их фагоцитарная активность. Торможение активности лимфоидной системы проявляется в том, что при введении глюкокортикоидов уменьшаются в размерах лимфоузлы и наступает быстрая инволюция тимуса, понижается количество лимфоцитов и эозинофилов в крови, подавляется выделение гистамина и кининов. Вместе с этим рецепторы кортикостероидов обнаружены и непосредственно в иммункомпетентных клетках — лимфоцитах, моноцитах, макрофагах и фибробластах, что обусловливает их противовоспалительное и антиаллергическое действие. В соединительной ткани глюкокортикоиды уменьшают количество основного вещества, число фибробластов и содержание коллагена за счет активации гиалуронидазы и усиленного распада мукополисахаридов, составляющих основу соединительной ткани. Глюкокортикоиды понижают адренокортикотропную активность гипофиза, изменяют строение островковой ткани эндокринного отдела поджелудочной железы, повышают чувствительность яичников к гонадотропным гормонам. Благодаря наличию рецепторов к кортикостероидам в ЦНС (лимбической системе, коре головного мозга, гипоталамусе, гипофизе, в нейронах варолиевого моста, в моторных ядрах среднего и продолговатого мозга) изменяются возбудимость и условно-рефлекторная деятельность.
Сетчатая зона. Тяжи клеток пучковой зоны постепенно переходят в сетчатую, где анастомозируют друг с другом, формируя сеть. Адренокортикоциты сетчатой зоны весьма различаются по своей форме: наряду с округлыми или бокаловидными клетками встречаются клетки полигональной формы. Ядра клеток этой зоны в основном округлые и содержат значительно конденсированный хроматин, расположенный по периферии. Митохондрии занимают большую часть цитоплазмы адренокортикоцитов, причем клетки, расположенные на границе с пучковой зоной, содержат везикулярные митохондрии, а по мере погружения в сетчатую зону эти органеллы приобретают тубулярные кристы. Эндоплаз-матический ретикулум и комплекс Гольджи по своей структуре весьма близки к организации этих структурных компонентов клетки в клубочковой и пучковой зонах.
В сетчатой зоне продуцируются половые гормоны — аналоги стероидных гормонов, вырабатываемых в половых железах. К анд-рогенам (мужским половым гормонам) относятся андростендион, 1 -оксиандростендион и дегидроэпиандростендион, причем наибольшая гормональная активность присуща андростендиону, однако она в пять раз ниже, чем у тестостерона, образованного в семен-
никах. Наличие андрогенов в надпочечниках не зависит от пола животного и имеет особое значение в период до полового созревания, обеспечивая анаболическое действие, усиливая рост тела и развитие скелетной мускулатуры. Эстрогены, в основном эстрон и эстрадиол, вырабатываются в надпочечниках также в очень малых количествах, и их влияние проявляется в случаях развития опухоли коры надпочечника. Прогестерон образуется в коре надпочечников из холестерина в процессе образования других стероидных гормонов, а в ходе дальнейших превращений может служить предшественником 11-дезоксикортикостерона и альдостеро-на. Его действие на матку и другие прогестерончувствительные ткани аналогично гормону желтого тела; у самок некоторых видов млекопитающих он способствует сохранению беременности при недостаточности функций желтого тела.
Регуляция секреции половых стероидов, вырабатываемых в сетчатой зоне надпочечников, осуществляется посредством троп-ных гормонов передней доли гипофиза: ФСГ для эстрогенов и ЛГ для андрогенов и прогестерона. Вместе с этим рост пучковой и сетчатых зон, а также образование и секреция глюкокортикоидов стимулируются адренокортикотропным гормоном (АКТГ). Даже однократное введение АКТГ приводит к снижению содержания в коре надпочечника холестерина, аскорбиновой кислоты и гликогена, используемых для синтеза глюкокортикоидов. АКТГ стимулирует и образование дегидроэпиандростерона и андростендиола у зародышей млекопитающих, тогда как у взрослых животных основным регулятором секреции надпочечнико-вых андрогенов становится Л Г.
Гормоны надпочечника в реакциях адаптации организма. В 1936 г. Г. Селье установил, что при действии самых различных патогенных и чрезмерных по силе и длительности раздражителей в организме возникают определенные неспецифические изменения, названные им общим адаптационным синдромом. Это состояние может развиваться, когда организм попадает в неадекватные условия существования: многочисленные травмы, чрезмерная мышечная нагрузка, охлаждение, отравления, инфекции, сильное эмоциональное возбуждение. Общим для всех этих воздействий является ответная реакция организма, выражающаяся в гипертрофии коры надпочечника, уменьшении тимуса, селезенки и лимфатических узлов. На фоне этих изменений развиваются дегенеративные процессы в печени, отечность, снижается тонус мышц и температура тела, появляются кровоизлияния и язвы желудочно-кишечного тракта. Факторы, вызывающие эту неспецифическую реакцию, принято называть стрессорами, поскольку общий адаптационный синдром возникает при таком состоянии организма, которое Г. Селье назвал состоянием «напряжения» (stress).
В ходе адаптации организма к неблагоприятным условиям происходит мобилизация механизмов, снижающих патологическое
516
517
воздействие. Если предотвратить развитие адаптационных реакций, существенно понижается сопротивляемость организма и может наступить смерть. В развитии общего адаптационного синдрома выделяют три стадии.
Первая стадия — «реакция тревоги», характеризуется усиленной секрецией адренокортикотропного гормона, который, в свою очередь, стимулирует секрецию глюкокортикоидов и выделение их в кровоток. В крови уменьшается число нейтрофилов, понижается уровень глюкозы, повышается проницаемость стенок кровеносных сосудов, появляются точечные кровоизлияния.
Вторая стадия — «стадия резистентности». При продолжающемся воздействии повреждающего фактора происходит гиперплазия коры надпочечников, наряду с усиленным синтезом глюкокортикоидов в надпочечнике накапливаются холестерин и аскорбиновая кислота. Процессы обмена веществ приходят в норму, выравниваются сдвиги метаболизма, обнаруживаемые в начале неблагоприятного воздействия. Наряду с этим уменьшаются тимус и лимфатические узлы.
Третья стадия — «стадияистощения», наступает, если напряжение слишком велико или неадекватно длительно и организм не может к нему приспособиться. Кора надпочечника, несмотря на гиперплазию, не способна вырабатывать нужное количество гормонов; клетки содержат мало липоидных гранул и аскорбиновой кислоты. В крови нарастает количество эозинофилов и лимфоцитов, отмечается гипертрофия лимфатических узлов. В условиях нарушения адаптации и истощении защитных механизмов наступает смерть как следствие нарушения резистентности организма и развития инфекционных процессов.
Вполне очевидно, что в развитии общего адаптационного синдрома главную роль играют гипофиз и кора надпочечников. Гипофиз секретирует АКТГ, стимулирующий синтез и выделение глюкокортикоидов, представляющих собой, по мнению Г. Селье, адаптационные гормоны. Адаптационные гормоны (кортикостерон, гидрокортизон), обладая противоспалительным действием, подавляют реакции соединительной ткани на патогенный раздражитель, усиливая катаболические процессы в организме. Их природными антагонистами являются соматотропный гормон и минералкортикоиды коры надпочечника (альдостерон, дезоксикортикостерон), стимулирующие анаболические процессы и усиливающие воспалительную реакцию. Следует учитывать, что «стрессоры» прежде всего действуют на рецепторы и состояние «напряжения» развивается рефлекторно с непосредственным участием ЦНС: кора больших полушарий и подкорковые образования воздействуют на гипоталамические структуры, ответственные за выделение кортиколиберина.
Усиленная продукция кортиколиберина, АКТГ и глюкокортикоидов — три необходимые составные части формирования об-
щего адаптационного синдрома. В этой связи весьма интересной для понимания проблемы адаптации является индивидуальная чувствительность организма к стрессорным воздействиям. При различном исходном уровне возбудимости животные различных типов нервной деятельности неадекватно реагируют на однозначные по величине факторы среды. В этой связи промышленное животноводство, неизбежно сталкивающееся со стрессорны-ми воздействиями, требует соответствующей селекционной работы, направленной на отбор «стрессоустойчивых» животных, у которых неблагоприятные факторы среды меньше влияют на уровень продуктивности и состояние их здоровья.
Мозговое вещество надпочечника. Образовано скоплениями крупных клеток округлой и полигональной формы, содержащими значительное число секреторных гранул. Согласно данным гистохимических и ультраструктурных исследований, в мозговом веществе различают клетки, продуцирующие адреналин — адрено-циты и норадреналин — норадреноциты. Адреналиновые клетки составляют большинство клеток мозгового вещества, содержат секреторные гранулы диаметром 300 нм, лежащие в центре пространства, ограниченного мембраной, и окруженные электроно-прозрачным ободком. Норадреноциты отличаются более плотными секреторными гранулами, располагающимися эксцентрично в ограниченном мембраной пространстве везикулы.
Мозговое вещество надпочечников вырабатывает два гормона из группы катехоламинов — адреналин и норадреналин, которые являются производными аминокислот фенилаланина и тирозина. Поскольку тирозин отличается от фенилаланина только наличием одной гидроксильной группы у фенольного кольца, то из тирозина ферментативным путем (фермент тирозиназа) образуется ди-оксифенилаланин (ДОФА), который при декарбоксилировании переходит в дофамин. Окисляясь, дофамин превращается в норадреналин, при метилировании которого образуется основной гормон мозгового вещества — адреналин.
Физиологическое действие катехоламинов (адреналина и нор-адреналина) заключается в обеспечении экстренной перестройки функций, направленной на повышение работоспособности организма в чрезвычайных ситуациях, когда требуется мобилизация всех резервов. Ответная реакция различных органов на воздействие катехоламинов проявляется в виде ослабления кровоснабжения кожи и внутренних органов и значительного усиления кровоснабжения головного мозга, сердца и скелетной мускулатуры. Наряду с перераспределением крови между органами «быстрого реагирования» ее объем увеличивается за счет выхода в общий кровоток депонированной крови, а насыщение крови кислородом усиливается за счет расширения бронхов и усиления вентиляции альвеол легкого. Катехол амины вызывают учащение ритма и увеличение силы сокращений сердечной мышцы за счет повышения ее возбудимости
518
519
и проводимости. Вместе с этим расширяются коронарные сосуды, обеспечивающие усиление сердечного кровотока.
Особенность реакций сосудов различных органов на действие адреналина и норадреналина определяется функциональной гетерогенностью рецепторов, которые подразделяются на альфа-и бета-адренорецепторы: при взаимодействии катехоламинов с альфа-адренорецепторами развиваются эффекты возбуждения — сужаются сосуды, сокращается гладкая мускулатура матки и т. д., а с бета-адренорецепторами — реакция торможения: расширяются сосуды, расслабляются бронхи, тормозится сократительная реакция миоэпителия альвеол молочных желез и т. д. Конечная реакция органа на действие катехоламинов определяется соотношением рецепторов различного типа и их структурной локализацией. Важно заметить, что адреналин влияет на оба типа рецепторов, а норадреналин взаимодействует только с альфа-адренорецепторами. Адреналин значительно повышает возбудимость ЦНС, причем существенно усиливается реактивность анализаторов (слуха, зрения). При активации деятельности нервной системы значительно повышается поглощение глюкозы тканями мозга и кислорода нейронами. Активное состояние ЦНС определяется влиянием адреналина на ретикулярную формацию, которая, в свою очередь, активирует нейроны коры больших полушарий. На адреналин реагируют некоторые ядра гипоталамуса, стимулирующие выработку в гипофизе АКТГ и подавляющие продукцию вазопресси-на и окситоцина.
Системные эффекты адреналина и норадреналина тесно связаны с непосредственным их влиянием на регуляцию углеводного обмена. В печени и мышцах интенсифицируется распад гликогена, в результате в крови повышается содержание свободной глюкозы и молочной кислоты. Адреналин повышает потребление кислорода мышцами и другими тканями, в результате основной обмен значительно возрастает (до 50 %), а также усиливает теплопродукцию, что в совокупности со снижением теплоотдачи в результате сужения периферических сосудов приводит к повышению температуры тела.
Регуляция секреторного процесса в клетках мозгового вещества надпочечника происходит двумя путями — рефлекторным и гуморальным. Нервная регуляция обеспечивается за счет нервных импульсов, идущих по симпатическим волокнам чревного нерва, причем адреноциты и норадреноциты иннервируются самостоятельными нервными волокнами и за счет этого достигается возможность независимых изменений в продукции каждого из катехоламинов. Интенсивная нервная стимуляция приводит к выделению из клеток готового гормона и усиленному его новообразованию. Нервная регуляция выброса катехоламинов в кровь определяется деятельностью коры больших полушарий. При воздействии внешних и внутренних раздражителей, эмоциях (страх, гнев, ярость)
отмечается выброс в кровоток больших количеств адреналина. Например, при виде кошки содержание адреналина в крови и у собаки и у кошки резко повышается. Гуморальная регуляция секреторного процесса в мозговом веществе надпочечника тесно связана с гипергликемическим действием катехоламинов: при снижении уровня сахара в крови усиливается секреторная функция адрено- и норадреноцитов.
Гормоны мозгового вещества надпочечника не накапливаются в организме и обладают кратковременным действием. Катехоламины, оказав свое физиологическое действие, быстро разрушаются за счет окислительного дезаминирования при участии моноаминооксидаз, а также метилирования. Часть адреналина, норадреналина и продуктов их превращения связывается в печени с глюкуроновой и серной кислотами и выводится из организма с мочой.
Таким образом, гормоны надпочечников как коркового слоя — кортикостероиды, так и мозгового вещества — катехоламины, участвуют в адаптации, усиливая устойчивость организма к неблагоприятным воздействиям. Выживание особи в экстремальных, неблагоприятных условиях обеспечивается совместной деятельностью симпатоадреналовой и гипоталамо-гипофизарно-надпо-чечниковой систем.
- Москва «КолосС» 2004
- Глава 1 регуляция физиологических функций
- 1.1. Понятие о гомеостазе
- 1.2. Гуморальные и нервные механизмы регуляции функций
- 1.3. Единство нервной и гуморальной регуляции
- 1.4. Основные принципы регуляции физиологических функций
- Глава 2 физиология возбудимых тканей
- 2.1. Физиология процессов возбуждения в нервной системе
- 2.1.1. Структурные особенности нервных клеток и волокон
- 2.1.2. Электрические явления в возбудимых тканях
- 3 А Рис. 2.3. Опыты Гальвани (а) и Маттеучи (б), доказывающие наличие электрических потенциалов в нервно-мышечном препарате:
- 2.1.2.1. Ультраструктурная организация клеточной мембраны
- 2 Рис. 2.4. Схема регистрации мембранного потенциала (а) и фрагмент клеточной мембраны (б) нервной клетки:
- 2.1.2.2. Потенциал покоя
- 2.1.2.3. Роль активного транспорта ионов в формировании мембранного потенциала
- 2.1.2.4. Механизмы генерации потенциала действия
- 2.1.2.5. Ионные каналы
- 2.1.2.6. Свойства потенциала действия
- 2.1.2.7. Распространение возбуждения
- 2.1.2.8. Передача нервного возбуждения между клетками. Представление о синапсах
- 2.2. Физиологические свойства мыщц
- 2.2.1 .Структурные основы сокращения мышц. Поперечнополосатые мышцы
- 2.2.2. Теория скольжения нитей
- 2.2.3. Электромеханическое скольжение
- 2.2.4. Механика мышцы
- 2.2.5. Метаболические группы поперечнополосатых мышц. Гладкие мышцы
- Глава 3 физиология системы крови
- 3.1. Значение и функции крови
- 3.2. Количество крови в организме
- 3.3. Состав крови
- 3.4. Физико-химические свойства крови
- 3.5. Гемостаз и свертывание крови
- 3.1. Плазменные факторы свертывания крови
- 3.6. Форменные элементы крови
- 3.7. Регуляция кроветворения
- 3.8. Группы крови
- 3.2. Распределение агглютиногенов и агглютининов в крови системы аво
- Глава 4 физиология иммунной системы
- 4.1. Структура иммунной системы
- 4.1.1. Центральные органы иммунной системы
- 4.1.2. Периферические органы иммунной системы
- 4.1.3. Клетки иммунной системы
- 4.2. Индукция и регуляция иммунного ответа
- 4.2.1. Антигены
- 4.2.2. Активация лимфоцитов
- 4.2.3. Иммунный ответ гуморального типа
- 4.2.4. Антитела
- 4.2.5. Иммунный ответ клеточного типа
- 4.3. Факторы естественной резистентности
- 4.3.1. Естественные барьеры
- 4.3.2. Система фагоцитов
- III стадия n стадия
- 4.3.3. Система комплемента, пропердин
- 4.3.4. Лизоцим
- 4.3.5. Интерфероны
- 4.3.6. Взаимодействие антиген—антитело
- Глава 5 физиология пищеварения
- 5.1. Сущность процесса пищеварения
- 5.2. Физиологические основы голода и насыщения
- 5.3. Методы исследования деятельности пищеварительного тракта
- 5.4. Пищеварение в ротовой полости
- 5.5. Пищеварение в желудке
- 5.1. Функциональное значение секреторных клеток желудка
- Желудочка по Гейденгайну (а) и и. П. Павлову (б):
- 5.6. Особенности желудочного пищеварения у некоторых видов животных
- 5.7. Пищеварение в тонком кишечнике
- 5.8. Пищеварение в толстом кишечнике
- 5.9. Всасывание
- Ние. 5.15. Схематическое изображение функционирования сократительной системы апикальной части эпителиальных клеток тонкой кишки
- 5.2. Гормоны желудочно-кишечного тракта
- 5.11. Пищеварение у птиц
- Глава 6 физиология кровообращения
- 6.1. Физиология сердца
- 6.2. Свойства сердечной мышцы
- 6.3. Сердечный цикл и клапанный аппарат сердца
- 6.1. Частота сокращений сердца в 1 мин
- 6.4. Физические явления, связанные с работой сердца
- 6.2. Систолический и минутный объемы крови у животных
- 6.5. Регуляция работы сердца
- 6.6. Движение крови по кровеносным сосудам
- 6.3. Величина артериального давления у животных, мм рт. Ст.
- 6.7. Регуляция движения крови по сосудам
- 6.8. Особенности кровообращения при различных состояниях организма
- Глава 7 физиология дыхания
- 7.1. Внешнее дыхание
- 7.3. Изменение давления в грудной полости при дыхании:
- 7.1. Частота дыхательных движений в 1 мин
- 7.2. Газообмен в легких
- 7.3. Транспорт газов кровью, газообмен в тканях
- 7.4. Регуляция дыхания
- Сосудистых
- 7.5. Особенности дыхания у птиц
- Глава 8 физиология выделительных процессов
- 8.1. Выделительная функция почек
- 8.2. Структурная организация почек
- 8.3. Мочеобразование
- 8.1. Концентрирующая способность почки
- 8.4. Гомеостатическая функция почек
- 8.2. Факторы, влияющие на клубочковую фильтрацию
- 8.3. Факторы, регулирующие канальцевую реабсорбцию
- 8.5. Регуляция процессов образования мочи
- 8.6. Состав и свойства конечной мочи
- 8.4. Объем мочи, выделяемой за сутки
- 8.7. Механизмы выведения мочи
- 8.8. Выделительная функция кожи
- Глава 9 физиология размножения
- 9.1. Половое созревание и половая зрелость
- 9.1. Половая и физиологическая зрелость самки
- 9.2. Физиология репродуктивной системы самцов
- 9.2. Средние количественные показатели спермы
- 9.3. Физиология репродуктивной системы самок
- 9.3. Особенности половых циклов
- 9.4. Оплодотворение
- 9.5. Беременность
- 9.6. Различные типы плацент у млекопитающих:
- 9.6. Роды
- 9.4. Продолжительность родов
- 9.7. Послеродовой период
- 9.8. Трансплантация зародышей у животных
- 9.9. Особенности размножения птиц
- Глава 10 физиология лактации
- 10.1. Развитие молочной железы
- 10.1. Химический состав секретов молочной железы, %
- 10.2. Тип плацентации и пассивная передача иммунитета (X -о — отсутствие передачи)
- 10.4. Пассивный перенос материнских антител
- 10.3. Передача пассивного иммунитета
- 10.2. Биосинтез основных компонентов молока
- 10.3. Физико-химические показатели молока
- 10.4. Структурная организация секреторного процесса
- 10.5. Регуляция секреции молока
- 10.6. Выведение молока
- 10.7. Физиологические основы машинного доения
- Глава 11 физиология обмена веществ и энергии
- 11.1. Терморегуляция
- 11.1. Ректальная температура у различных видов животных
- 11.2. Белковый (азотистый) обмен
- 11.2.1. Основные этапы белкового обмена
- 11.2.2. Регуляция белкового обмена
- 11.3. Углеводный обмен
- 11.3.1. Основные этапы углеводного обмена
- 11.3.2. Регуляция углеводного обмена
- 11.4. Липидный обмен
- 11.4.1. Основные этапы липидного обмена
- 11.4.2. Регуляция липидного обмена
- 11.5. Обмен воды
- 11.2. Концентрация электролитов в жидкостях организма, мэкв/л
- 11.6. Минеральный обмен
- 11.6.1. Физиологическая роль макроэлементов
- 11.6.2. Физиологическая роль микроэлементов
- 11.6.3. Регуляция минерального обмена
- 11.7. Витамины
- 11.7.1. Жирорастворимые витамины
- 11.7.2. Водорастворимые витамины
- 12.1. Механизмы взаимодействия гормона с клетками
- 12.2. Общие механизмы регуляции внутренней секреции
- 12.1. Нейрогормоны гипоталамо-гипофизарной системы
- 12.3. Гипофиз
- 12.4. Щитовидная железа
- 12.5. Надпочечники
- 12.6. Поджелудочная железа. Внутренняя секреция
- 12.7. Эндокринная функция половых желез
- 12.8. Тимус
- 12.9. Эпифиз
- 12.10. Тканевые гормоны
- 12.11. Гормоны и продуктивность животных
- Глава 13
- 13.1. Нейроны и синапсы
- 13.2. Рефлекторная деятельность
- 13.3. Свойства нервных центров
- 13.4. Координация рефлекторных процессов
- 13.5. Частная физиология
- 13.5.1. Спинной мозг
- Ного мозга по Рекседу. Цифрами обозначены слои нерв пых клеток
- 13.5.2. Продолговатый мозг и варолиев мост
- 13.5.3. Средний мозг
- 13.5.4. Ретикулярная формация
- 13.5.5. Мозжечок
- 13.5.6. Промежуточный мозг
- 13.5.7. Подкорковые ядра
- 13.6. Физиология вегетативной нервной системы
- 13.1. Строение и функции симпатической и парасимпатической нервных систем
- Глава 14
- 14.1. Понятие о нервизме
- 14.2. Методы исследования функций коры больших полушарий
- 14.3. Характеристика условных рефлексов и механизм их образования
- Слуховая
- 14.4. Торможение условных рефлексов
- 14.5. Взаимоотношения возбуждения и торможения в коре больших полушарий
- 14.6. Типы высшей нервной деятельности
- 14.7. Сон и гипноз
- 14.8. Две сигнальные системы действительности
- 14.9. Теория функциональных систем
- Глава 15 физиология анализаторов
- 15.1. Рецепторные клетки — начальное звено анализатора
- 15.2. Двигательный анализатор
- 15.2.1. Мышечное веретено
- 15.2.2. Сухожильный рецептор гольджи
- 15.2.3. Рефлекс на растяжение мышцы
- 15.3. Кожный анализатор
- 15.3.1. Механорецепторы кожи
- 15.3.2. Терморецепторы кожи
- 15.3.3. Болевые рецепторы кожи
- 15.4. Обонятельный анализатор
- Рецептора:
- 15.5. Вкусовой анализатор
- 15.6. Слуховой анализатор
- Активности:
- 15.7. Анализатор положения тела в пространстве
- 15.8. Зрительный анализатор
- 15.8.1. Структура и функция сетчатки
- 15.8.2. Цветовое зрение
- 15.8.3. Переработка зрительных сигналов в сетчатке
- 15.8.4. Защитный аппарат глаза
- 15.9. Анализаторы внутренней среды opi лии 1мл
- 15.9.1. Висцеральные механорецепторы
- 15.9.2. Висцеральные терморецепторы
- 15.9.3. Висцеральные хеморецепторы
- 15.9.4. Болевые висцеральные рецепторы
- Глава 16 этология
- 16.1. Формы поведения
- 16.2. Поведенческие реакции
- 16.3. Факторы, влияющие на поведение
- Оглавление
- Глава 1. Регуляция физиологических функций (т. А. Эйсымонт) 17
- Глава 2. Физиология возбудимых тканей (к п. Алексеев) 27
- Глава 7. Физиология дыхания (т. А. Эйсымонт) 291
- Глава 9. Физиология размножения (и. О. Боголюбова) 351
- Глава 10. Физиология лактации (в. Г. Скопичев) 392
- Глава 12. Физиология эндокринной системы (в. Г. Скопичев) 483
- Глава 13. Физиология центральной нервной системы (а. И. Енукашвили) 544
- Глава 15. Физиология анализаторов (н.П.Алексеев) 628
- Глава 16. Этология (т.А. Эйсымонт).., 697
- 214000, Г. Смоленск, проспект им. Ю. Гагарина, 2.