15.1. Рецепторные клетки — начальное звено анализатора
Восприятие и обработка информации, поступающей из внешней и внутренней среды животного, начинается в рецепторах. Рассмотрим в общих чертах строение и функционирование рецептор-ной части анализаторов, прежде чем перейти к изложению механизмов восприятия рецепторами энергии раздражающих стимулов различных типов (различных модальностей) — механических, световых, химических, термических.
Несмотря на весьма большое разнообразие рецепторов, входящих в различные анализаторы, их можно разделить на две группы, что подтверждают данные морфологических исследований, полученные на световом и электронно-микроскопическом уровнях. Рецепторы первой группы представляют собой разветвленную терминальную часть нервного волокна (дендрита) первого чувствительного, сенсорного, афферентного нейрона: все эти названия обозначают эту нервную клетку. Название чувствительный, или сенсорный, дано потому, что при возбуждении рецептора в центральном отделе анализатора животного возникает ощущение. Однако в норме работа анализатора может происходить и без формирования ощущения. Поэтому наиболее подходящее название — афферентный нейрон, афферентный рецептор, т. е. передающий информацию в ЦНС.
К первой группе относятся афферентные рецепторы кожного анализатора — механорецепторы, реагирующие на механическое смещение волос, а также на прикосновение или надавливание на безволосые участки кожи; терморецепторы, реагирующие на повышение или снижение температуры кожи, — соответственно тепловые или холодовые; болевые рецепторы, реагирующие на сильные механические и температурные воздействия на кожу и формирующие в центральном отделе ощущение боли. В эту же группу входят и рецепторы висцерального анализатора (внутренних органов): механо- и терморецепторы, болевые, а также реагирующие на изменение химического состава окружающей среды — хеморецепторы.
Рецепторы двигательного анализатора (проприорецепторы) — механорецепторы мышц и сухожилий также образованы разветвлениями терминальной части первого афферентного нейрона. К первой группе относятся и рецепторы обонятельного анализатора, воспринимающего молекулы различных химических веществ — хеморецепторы.
629
Вторая группа афферентных рецепторов представлена специальными клетками, многие из которых на обращенной к раздражающему стимулу поверхности имеют волоски. Первый афферентный нейрон связан с этими клетками с помощью химических синапсов. Такие рецепторы составляют начальное звено слухового анализатора и анализатора положения тела в пространстве; они реагируют на механические стимулы, т. е. являются механорецепторами. Видоизмененные волосковые клетки представляют из себя рецепторы зрительного анализатора, воспринимающие фотоны света — фоторецепторы. И наконец, рецептор-ные клетки вкусового анализатора, реагирующие на химический состав пищи в ротовой полости у животного, представляют собой хеморецепторы.
Необходимо отметить, что терминальные части рецепторов не прямо контактируют с раздражающими факторами, а через окружающие их структуры, названные вспомогательным аппаратом. Вспомогательный аппарат имеет чрезвычайно важное значение для осуществления нормальной деятельности рецепторов: он может оказывать модулирующее влияние на раздражающий стимул — усиливать или ослаблять интенсивность раздражения. Он же выполняет барьерную функцию — ограничивает влияние различных химических веществ и ионов со стороны соседних клеточных структур на рецепторную область, сохраняя вокруг нее особый состав среды. Вспомогательный аппарат по своей структуре значительно варьирует у различных рецепторов.
Возбуждение в нервной системе может передаваться в виде двух типов электрических сигналов — градуальных и потенциалов действия, генерируемых по закону «все или ничего». Градуальные потенциалы, т. е. потенциалы, изменяющие амплитуду в зависимости от величины раздражения при самых благоприятных условиях проведения, распространяются на 2...3 мм от места своего возникновения (см. гл. 2). Связь между нервными клетками на более длительные расстояния обеспечивается только потенциалами действия. Принимая во внимание тот факт, что афферентные рецеп-торные образования у животных находятся от ЦНС на расстоянии, равном десяткам или даже сотням миллиметров, энергия раздражающего стимула должна трансформироваться в рецепторах в потенциалы действия. Действительно, при регистрации электрической активности нервных волокон было обнаружено, что в афферентных волокнах, идущих от различных рецепторов в ЦНС, кроме потенциалов действия никаких других сигналов не генерируется. Учитывая, что амплитуда потенциалов действия не изменяется, кодирование информации о раздражающем стимуле в анализаторах частотное. Это означает, что длительные, непрерывные воздействия должны превращаться в рецепторах в определенным образом организованную последовательность потенциалов действия с разной частотой. Вместе с тем совершенствование методов
регистрации электрической активности, а также разработка методов экспериментирования с отдельными нервными клетками и волокнами позволили в середине XX в. приблизить место регистрации электрической активности непосредственно к рецептор-ной области. Оказалось, что возникновению потенциалов действия в афферентных нервных волокнах предшествует градуальный электрический потенциал, генерируемый в рецепторных окончаниях в результате их радражения адекватными стимулами, получивший название рецепторного потенциала. Напомним, что мембранный потенциал нервных или мышечных клеток Ем можно представить как сумму потенциалов:
An= А""" А»>
где Еъ — потенциал, образующийся на мембране за счет процессов пассивного транспорта ионов; £а — потенциал, образующийся на мембране за счет активного транспорта ионов при условии, что ионный насос электрогенен.
С достаточной точностью Ai описывается уравнением Годдма-на, из которого следует, что мембранный потенциал клетки зависит как от разности наружной и внутренних концентраций ионов, так и от их проницаемости через мембрану. В свою очередь, мембранная проницаемость обусловлена числом открытых ионных каналов. Для нервной и мышечной мембраны в покое главным по-тенциалобразующим ионом является ион калия, для которого проницаемость мембраны наивысшая. При возбуждении (генерации потенциала действия) существенно увеличивается в первую очередь проницаемость мембраны для ионов натрия, а затем для ионов калия. Оба типа каналов являются потенциал зависимыми. Однако процесс увеличения (активации) числа открытых каналов в зависимости от деполяризации мембраны для ионов натрия в отличие от калиевых каналов носит самоускоряющийся (регенеративный) характер. Учитывая градуальность рецепторного потенциала, процесс активации или инактивации ионных каналов, обусловливающих его возникновение, не является регенеративным. Принимая во внимание различную модальность раздражающих стимулов, ионные каналы, находящиеся в области рецептор-ной мембраны, должны иметь в своей структуре или же рядом в мембране участки (рецепторные белки), которые могут активироваться под влиянием энергии адекватного для данного рецептора стимула и открывать или закрывать каналы.
На основании вышеизложенного можно представить в общем виде последовательность событий, происходящих в афферентной рецепторной клетке при действии на нее адекватного раздражающего стимула (рис. 15.1). Адекватный раздражающий стимул (/) через структуры вспомогательного аппарата (2) воздействует на мембрану рецептора. Энергия раздражающего стимула вызывает изменения рецепторного белка (3), находящегося в клеточной
630
631
Возникновение потенциала действия в нервном волокне афферентного нейрона (7)
↓
Модуляция стимула структурами
вспомогательного аппарата
(2)
↓
Активизация рецепторного белка (3)
↓
Открытие или закрытие каналов
рецепторной мембраны
(4)
↓
Рецепторный ток (5)
↓
Рецепторный потенциал
(6)
↓ ↓
Модуляция выделения
медиатора рецепторной
клеткой
(7а)
↓
Возникновение потенциала
действия в нервном волокне
афферентного нейрона
(76)
жет изменить мембранный потенциал до порогового уроним и вызвать генерацию потенциалов действия, которые будут распро страняться по нервному волокну в ЦНС. Во втором случае (7и) и результате изменения мембранного потенциала в синаптической области изменится уровень выделения медиатора. Если выход медиатора увеличится, в постсинаптической области окончания (76), образованного афферентным волокном, произойдет генерация потенциала действия, который, как и в первом случае, по нервному волокну будет распространяться в центральный отдел соответствующего анализатора. Следует отметить, что из-за методических трудностей уровень изученности процессов трансформации энергии адекватного стимула существенно отличается у различных рецепторов. Поэтому для ряда рецепторов некоторые этапы представленной схемы еще мало изучены. В следующих разделах мы более детально ознакомимся со свойствами рецепторов различных модальностей.
- Москва «КолосС» 2004
- Глава 1 регуляция физиологических функций
- 1.1. Понятие о гомеостазе
- 1.2. Гуморальные и нервные механизмы регуляции функций
- 1.3. Единство нервной и гуморальной регуляции
- 1.4. Основные принципы регуляции физиологических функций
- Глава 2 физиология возбудимых тканей
- 2.1. Физиология процессов возбуждения в нервной системе
- 2.1.1. Структурные особенности нервных клеток и волокон
- 2.1.2. Электрические явления в возбудимых тканях
- 3 А Рис. 2.3. Опыты Гальвани (а) и Маттеучи (б), доказывающие наличие электрических потенциалов в нервно-мышечном препарате:
- 2.1.2.1. Ультраструктурная организация клеточной мембраны
- 2 Рис. 2.4. Схема регистрации мембранного потенциала (а) и фрагмент клеточной мембраны (б) нервной клетки:
- 2.1.2.2. Потенциал покоя
- 2.1.2.3. Роль активного транспорта ионов в формировании мембранного потенциала
- 2.1.2.4. Механизмы генерации потенциала действия
- 2.1.2.5. Ионные каналы
- 2.1.2.6. Свойства потенциала действия
- 2.1.2.7. Распространение возбуждения
- 2.1.2.8. Передача нервного возбуждения между клетками. Представление о синапсах
- 2.2. Физиологические свойства мыщц
- 2.2.1 .Структурные основы сокращения мышц. Поперечнополосатые мышцы
- 2.2.2. Теория скольжения нитей
- 2.2.3. Электромеханическое скольжение
- 2.2.4. Механика мышцы
- 2.2.5. Метаболические группы поперечнополосатых мышц. Гладкие мышцы
- Глава 3 физиология системы крови
- 3.1. Значение и функции крови
- 3.2. Количество крови в организме
- 3.3. Состав крови
- 3.4. Физико-химические свойства крови
- 3.5. Гемостаз и свертывание крови
- 3.1. Плазменные факторы свертывания крови
- 3.6. Форменные элементы крови
- 3.7. Регуляция кроветворения
- 3.8. Группы крови
- 3.2. Распределение агглютиногенов и агглютининов в крови системы аво
- Глава 4 физиология иммунной системы
- 4.1. Структура иммунной системы
- 4.1.1. Центральные органы иммунной системы
- 4.1.2. Периферические органы иммунной системы
- 4.1.3. Клетки иммунной системы
- 4.2. Индукция и регуляция иммунного ответа
- 4.2.1. Антигены
- 4.2.2. Активация лимфоцитов
- 4.2.3. Иммунный ответ гуморального типа
- 4.2.4. Антитела
- 4.2.5. Иммунный ответ клеточного типа
- 4.3. Факторы естественной резистентности
- 4.3.1. Естественные барьеры
- 4.3.2. Система фагоцитов
- III стадия n стадия
- 4.3.3. Система комплемента, пропердин
- 4.3.4. Лизоцим
- 4.3.5. Интерфероны
- 4.3.6. Взаимодействие антиген—антитело
- Глава 5 физиология пищеварения
- 5.1. Сущность процесса пищеварения
- 5.2. Физиологические основы голода и насыщения
- 5.3. Методы исследования деятельности пищеварительного тракта
- 5.4. Пищеварение в ротовой полости
- 5.5. Пищеварение в желудке
- 5.1. Функциональное значение секреторных клеток желудка
- Желудочка по Гейденгайну (а) и и. П. Павлову (б):
- 5.6. Особенности желудочного пищеварения у некоторых видов животных
- 5.7. Пищеварение в тонком кишечнике
- 5.8. Пищеварение в толстом кишечнике
- 5.9. Всасывание
- Ние. 5.15. Схематическое изображение функционирования сократительной системы апикальной части эпителиальных клеток тонкой кишки
- 5.2. Гормоны желудочно-кишечного тракта
- 5.11. Пищеварение у птиц
- Глава 6 физиология кровообращения
- 6.1. Физиология сердца
- 6.2. Свойства сердечной мышцы
- 6.3. Сердечный цикл и клапанный аппарат сердца
- 6.1. Частота сокращений сердца в 1 мин
- 6.4. Физические явления, связанные с работой сердца
- 6.2. Систолический и минутный объемы крови у животных
- 6.5. Регуляция работы сердца
- 6.6. Движение крови по кровеносным сосудам
- 6.3. Величина артериального давления у животных, мм рт. Ст.
- 6.7. Регуляция движения крови по сосудам
- 6.8. Особенности кровообращения при различных состояниях организма
- Глава 7 физиология дыхания
- 7.1. Внешнее дыхание
- 7.3. Изменение давления в грудной полости при дыхании:
- 7.1. Частота дыхательных движений в 1 мин
- 7.2. Газообмен в легких
- 7.3. Транспорт газов кровью, газообмен в тканях
- 7.4. Регуляция дыхания
- Сосудистых
- 7.5. Особенности дыхания у птиц
- Глава 8 физиология выделительных процессов
- 8.1. Выделительная функция почек
- 8.2. Структурная организация почек
- 8.3. Мочеобразование
- 8.1. Концентрирующая способность почки
- 8.4. Гомеостатическая функция почек
- 8.2. Факторы, влияющие на клубочковую фильтрацию
- 8.3. Факторы, регулирующие канальцевую реабсорбцию
- 8.5. Регуляция процессов образования мочи
- 8.6. Состав и свойства конечной мочи
- 8.4. Объем мочи, выделяемой за сутки
- 8.7. Механизмы выведения мочи
- 8.8. Выделительная функция кожи
- Глава 9 физиология размножения
- 9.1. Половое созревание и половая зрелость
- 9.1. Половая и физиологическая зрелость самки
- 9.2. Физиология репродуктивной системы самцов
- 9.2. Средние количественные показатели спермы
- 9.3. Физиология репродуктивной системы самок
- 9.3. Особенности половых циклов
- 9.4. Оплодотворение
- 9.5. Беременность
- 9.6. Различные типы плацент у млекопитающих:
- 9.6. Роды
- 9.4. Продолжительность родов
- 9.7. Послеродовой период
- 9.8. Трансплантация зародышей у животных
- 9.9. Особенности размножения птиц
- Глава 10 физиология лактации
- 10.1. Развитие молочной железы
- 10.1. Химический состав секретов молочной железы, %
- 10.2. Тип плацентации и пассивная передача иммунитета (X -о — отсутствие передачи)
- 10.4. Пассивный перенос материнских антител
- 10.3. Передача пассивного иммунитета
- 10.2. Биосинтез основных компонентов молока
- 10.3. Физико-химические показатели молока
- 10.4. Структурная организация секреторного процесса
- 10.5. Регуляция секреции молока
- 10.6. Выведение молока
- 10.7. Физиологические основы машинного доения
- Глава 11 физиология обмена веществ и энергии
- 11.1. Терморегуляция
- 11.1. Ректальная температура у различных видов животных
- 11.2. Белковый (азотистый) обмен
- 11.2.1. Основные этапы белкового обмена
- 11.2.2. Регуляция белкового обмена
- 11.3. Углеводный обмен
- 11.3.1. Основные этапы углеводного обмена
- 11.3.2. Регуляция углеводного обмена
- 11.4. Липидный обмен
- 11.4.1. Основные этапы липидного обмена
- 11.4.2. Регуляция липидного обмена
- 11.5. Обмен воды
- 11.2. Концентрация электролитов в жидкостях организма, мэкв/л
- 11.6. Минеральный обмен
- 11.6.1. Физиологическая роль макроэлементов
- 11.6.2. Физиологическая роль микроэлементов
- 11.6.3. Регуляция минерального обмена
- 11.7. Витамины
- 11.7.1. Жирорастворимые витамины
- 11.7.2. Водорастворимые витамины
- 12.1. Механизмы взаимодействия гормона с клетками
- 12.2. Общие механизмы регуляции внутренней секреции
- 12.1. Нейрогормоны гипоталамо-гипофизарной системы
- 12.3. Гипофиз
- 12.4. Щитовидная железа
- 12.5. Надпочечники
- 12.6. Поджелудочная железа. Внутренняя секреция
- 12.7. Эндокринная функция половых желез
- 12.8. Тимус
- 12.9. Эпифиз
- 12.10. Тканевые гормоны
- 12.11. Гормоны и продуктивность животных
- Глава 13
- 13.1. Нейроны и синапсы
- 13.2. Рефлекторная деятельность
- 13.3. Свойства нервных центров
- 13.4. Координация рефлекторных процессов
- 13.5. Частная физиология
- 13.5.1. Спинной мозг
- Ного мозга по Рекседу. Цифрами обозначены слои нерв пых клеток
- 13.5.2. Продолговатый мозг и варолиев мост
- 13.5.3. Средний мозг
- 13.5.4. Ретикулярная формация
- 13.5.5. Мозжечок
- 13.5.6. Промежуточный мозг
- 13.5.7. Подкорковые ядра
- 13.6. Физиология вегетативной нервной системы
- 13.1. Строение и функции симпатической и парасимпатической нервных систем
- Глава 14
- 14.1. Понятие о нервизме
- 14.2. Методы исследования функций коры больших полушарий
- 14.3. Характеристика условных рефлексов и механизм их образования
- Слуховая
- 14.4. Торможение условных рефлексов
- 14.5. Взаимоотношения возбуждения и торможения в коре больших полушарий
- 14.6. Типы высшей нервной деятельности
- 14.7. Сон и гипноз
- 14.8. Две сигнальные системы действительности
- 14.9. Теория функциональных систем
- Глава 15 физиология анализаторов
- 15.1. Рецепторные клетки — начальное звено анализатора
- 15.2. Двигательный анализатор
- 15.2.1. Мышечное веретено
- 15.2.2. Сухожильный рецептор гольджи
- 15.2.3. Рефлекс на растяжение мышцы
- 15.3. Кожный анализатор
- 15.3.1. Механорецепторы кожи
- 15.3.2. Терморецепторы кожи
- 15.3.3. Болевые рецепторы кожи
- 15.4. Обонятельный анализатор
- Рецептора:
- 15.5. Вкусовой анализатор
- 15.6. Слуховой анализатор
- Активности:
- 15.7. Анализатор положения тела в пространстве
- 15.8. Зрительный анализатор
- 15.8.1. Структура и функция сетчатки
- 15.8.2. Цветовое зрение
- 15.8.3. Переработка зрительных сигналов в сетчатке
- 15.8.4. Защитный аппарат глаза
- 15.9. Анализаторы внутренней среды opi лии 1мл
- 15.9.1. Висцеральные механорецепторы
- 15.9.2. Висцеральные терморецепторы
- 15.9.3. Висцеральные хеморецепторы
- 15.9.4. Болевые висцеральные рецепторы
- Глава 16 этология
- 16.1. Формы поведения
- 16.2. Поведенческие реакции
- 16.3. Факторы, влияющие на поведение
- Оглавление
- Глава 1. Регуляция физиологических функций (т. А. Эйсымонт) 17
- Глава 2. Физиология возбудимых тканей (к п. Алексеев) 27
- Глава 7. Физиология дыхания (т. А. Эйсымонт) 291
- Глава 9. Физиология размножения (и. О. Боголюбова) 351
- Глава 10. Физиология лактации (в. Г. Скопичев) 392
- Глава 12. Физиология эндокринной системы (в. Г. Скопичев) 483
- Глава 13. Физиология центральной нервной системы (а. И. Енукашвили) 544
- Глава 15. Физиология анализаторов (н.П.Алексеев) 628
- Глава 16. Этология (т.А. Эйсымонт).., 697
- 214000, Г. Смоленск, проспект им. Ю. Гагарина, 2.