logo
Скопичев В

7.3. Транспорт газов кровью, газообмен в тканях

Транспорт кислорода кровью. Кислород транспортируется кро­вью в двух формах — в растворенном виде и в соединении с гемо­глобином. В плазме артериальной крови содержится очень не­большое количество физически растворенного кислорода, всего

0,3 об.%, т. е. 0,3 мл кислорода в 100 мл крови. Основная же часть кислорода вступает в непрочное соединение с гемоглобином эритроцитов, образуя оксигемоглобин. Насыщение крови кис­лородом называется оксигенацией или артериализацией крови. Кровь, оттекающая от легких по легочным венам, имеет такой же газовый состав, что и артериальная кровь в большом круге кро­вообращения.

Количество кислорода, находящееся в 100 мл крови при усло­вии полного перехода гемоглобина в оксигемоглобин, называется кислородной емкостью крови. Эта величина помимо парциального давления кислорода зависит от содержания гемоглобина в крови. Известно, что 1 г гемоглобина может в среднем связать 1,34 мл кис­лорода. Следовательно, зная уровень содержания в крови гемогло­бина, можно вычислить кислородную емкость крови. Так, у лоша­дей при содержании гемоглобина в крови около 14 г/100 мл кис­лородная емкость крови составляет (1,34 • 14) около 19 об.%, у круп­ного рогатого скота при уровне гемоглобина 10... 12 г/100 мл — около 13...16 об.%. Пересчитав содержание кислорода в общем объеме крови, оказывается, что его запаса хватит лишь на З...4мин при условии, если он не будет поступать из воздуха.

На уровне моря при соответственных колебаниях атмосфер­ного давления и парциального давления кислорода в альвео­лярном воздухе гемоглобин практически полностью насыщает­ся кислородом. В условиях высокогорья, где атмосферное дав­ление низкое, снижается парциальное давление кислорода и уменьшается кислородная емкость крови. На содержание кис­лорода в крови также влияет температура крови: с повышением температуры тела снижается кислородная насыщенность крови. Высокое содержание в крови водородных ионов и диоксида углерода способствует отщеплению кислорода от оксигемогло-бина при прохождении крови через капилляры большого круга кровообращения.

Обмен газов между кровью и тканями совершается так же, как и обмен газов между кровью и альвеолярным воздухом — по законам диффузии и осмоса. Поступающая сюда артериаль­ная кровь насыщена кислородом, его напряжение составляет 100 мм рт. ст. В тканевой жидкости напряжение кислорода со­ставляет 20...37 мм рт. ст., а в клетках, которые потребляют кислород, его уровень падает до 0. Поэтому оксигемоглобин отщепляет кислород, который переходит сначала в тканевую жидкость, а затем в клетки тканей.

В процессе тканевого дыхания из клеток выделяется диоксид углерода. Он сначала растворяется в тканевой жидкости и создает там напряжение около 60...70 мм рт. ст., что выше, чем в крови (40 мм рт. ст.). Градиент напряжения кислорода в тканевой жид­кости и крови является причиной диффузии диоксида углерода из тканевой жидкости в кровь.

304

20 — 3389

305

Транспорт диоксида углерода кровью. Диоксид углерода транс­портируется в трех формах: в растворенном виде, в соединении с гемоглобином (карбогемоглобин) и в виде бикарбонатов.

Поступающий из тканей диоксид углерода незначительно ра­створяется в плазме крови —до 2,5об.%; его растворимость не­много выше, чем у кислорода. Из плазмы диоксид углерода про­никает в эритроциты и вытесняет из оксигемоглобина кислород. Оксигемоглобин превращается в восстановленнный, или редуци­рованный, гемоглобин. Присутствующий в эритроцитах фермент4 карбоангидраза ускоряет соединение диоксида углерода с водой и образование угольной кислоты — Н2С03. Эта кислота нестойкая, она диссоциирует на Н+ и HCOJ.

Поскольку мембрана эритроцита непроницаема для Н+, он ос­тается в эритроцитах, а НС03 переходит в плазму крови, где пре­вращается в бикарбонат натрия (NaHC03). Часть диоксида углеро­да в эритроцитах соединяется с гемоглобином, образуя карбогемо­глобин, а с катионами калия — бикарбонат калия (КНС03).

В легочных альвеолах, где парциальное давление диоксида угле­рода ниже, чем в венозной крови, растворенный и освободившийся при диссоциации карбогемоглобина диоксид углерода диффунди­рует в альвеолярный воздух. Одновременно кислород переходит в кровь и связывается с редуцированным гемоглобином, образуя ок­сигемоглобин. Оксигемоглобин, являясь более сильной кислотой, чем угольная, вытесняет угольную кислоту из бикарбонатов ионы калия. Угольная кислота расщепляется до С02 и Н20 при участии карбоангидразы. Диоксид углерода переходит из эритроцитов в плазму крови и затем в альвеолярный воздух (см. рис. 7.6).

Несмотря на то что основная часть диоксида углерода присут­ствует в плазме крови в форме бикарбоната натрия, в альвеолярный воздух выделяется преимущественно диоксид углерода не из плаз­мы крови, а из эритроцитов. Дело в том, что только в эритроцитах имеется карбоангидраза, расщепляющая угольную кислоту. В плаз­ме крови карбоангидразы нет, поэтому бикарбонаты разрушают­ся очень медленно и диоксид углерода не успевает выйти в альвео­лярный воздух (по легочным капиллярам кровь проходит менее чем за 1 с). Таким образом, диоксид углерода находится в крови в трех формах: растворенной, в виде карбогемоглобина, бикарбона­тов, но через легкие удаляется только в одной форме — С02.

Не весь кислород из артериальной крови поступает в ткани, часть его переходит в венозную кровь. Отношение объема кисло­рода, поглощенного тканями, к содержанию его в артериальной крови называется коэффициентом утилизации кислорода. В услови­ях физиологического покоя он составляет около 40 %. При более высоком уровне метаболизма коэффициент утилизации кислорода увеличивается и уровень его в венозной крови падает.

Проходя через легкие, не весь диоксид углерода поступает в аль­веолярный воздух, часть его остается в крови и переходит в арте-

риальную кровь. Таким образом, если в венозной крови содержит­ся 58 об.% диоксида углерода, то в артериальной крови — 52 об.%. Наличие определенного уровня кислорода и особенно диоксида углерода в артериальной крови имеет огромное значение в про­цессах регуляции внешнего дыхания.

Тканевое (внутриклеточное) дыхание. Тканевое дыхание — это процесс биологического окисления в клетках и тканях ор­ганизма.

Биологическое окисление происходит в митохондриях. Внут­реннее пространство митохондрий окружено двумя мембрана­ми—наружной и внутренней. На внутренней мембране, имею­щей складчатое строение, сосредоточено большое количество ферментов. Поступающий в клетку кислород затрачивается на окисление жиров, углеводов и белков. При этом освобождается энергия в наиболее доступной для клеток форме, прежде всего в форме АТФ — аденозинтрифосфорной кислоты. Ведущее значе­ние в окислительных процессах имеют реакции дегидрирования (отдача водорода).

Синтез АТФ осуществляется при миграции электронов от субстрата к кислороду через цепь дыхательных ферментов (фла-виновые ферменты, цитохромы и др.) Освобождающаяся энер­гия накапливается в форме макроэргических соединений (на­пример, АТФ), а конечными продуктами реакций становятся вода и диоксид углерода.

Наряду с окислительным фосфорилированием кислород мо­жет использоваться в некоторых тканях по типу непосредствен­ного внедрения в окисляемое вещество. Такое окисление назы­вается микросомальным, ибо происходит в микросомах — вези­кулах, образованных мембранами эндоплазматического ретику-лума клетки.

Ткани и органы имеют разную потребность в кислороде: ин­тенсивнее поглощают кислород из крови головной мозг, особен­но кора больших полушарий, печень, сердце, почки. Меньше потребляют кислорода в состоянии покоя клетки крови, скелет­ные мышцы, селезенка. При нагрузке потребление кислорода воз­растает. Например, при тяжелой мышечной работе скелетные мышцы потребляют больше кислорода в 40 раз, сердечная мыш­ца — в 4 раза (в расчете на 1г ткани).

Даже в пределах одного органа потребление кислорода может резко отличаться. Например, в корковой части почек оно интен­сивнее, чем в мозговой части, в 20 раз. Это зависит от строения ткани, плотности распределения в ней кровеносных капилляров, регуляции кровотока, коэффициента утилизации кислорода и ряда других факторов. Следует помнить, что чем больше клетки будут потреблять кислорода, тем больше образуется продуктов об­мена — диоксида углерода и воды.

306

20*

307