11.2.1. Основные этапы белкового обмена
Первый этап. Пищеварительные процессы обеспечиваются функционированием ферментативных систем, участвующих в расщеплении белков до аминокислот и последующем их всасывании в кровь. Ферментативные процессы расщепления белка осуществляются протеиназами — гидролитическими ферментами, разрушающими пептидные связи, в результате чего из белков образуются крупные полипептиды (пептоны и альбумозы). В дальнейшем при участии карбопептидаз, аминопептидаз, дипептидаз белковая молекула разрушается до стадии аминокислот. Аминокислоты транспортируются через эпителиальную клетку кишечника и поступают с кровотоком через воротную вену в печень, где часть их задерживается и трансформируется, а часть переносится к различным органам и тканям. Заметим, что всасывание аминокислот в кишечнике — энергозависимый процесс, требующий расходования АТФ.
У жвачных в рубце большая часть белков и других азотистых соединений пищи до поступления в последующие отделы пищеварительного тракта подвергается специфическим превращениям. Рубцовые микроорганизмы, обладая в числе прочих и протеолити-ческой активностью, расщепляют белки корма до пептидов и аминокислот и служат источником образования аммиака в процессе дезаминирования. Образующийся аммиак используется в основном для синтеза микробиальных белков, но некоторое его количество поступает через стенку рубца в кровь. Высвобождение аммиака под действием микробиальных дезаминаз происходит достаточно быстро, причем различные кормовые источники азота существенно различаются по скорости образования аммиака в зависимости от подготовки корма: силосованные корма, где процесс ферментативного расщепления составляющих корма в основном уже прошел, обеспечивают значительно более высокий выход аммиака.
Особенно важным источником аммиака является мочевина эндогенного и экзогенного происхождения, которая расщепляется микробиальными уреазами до аммиака и диоксида углерода. Высвобождение аммиака происходит и из других небелковых соединений азота. Кроме того, до аммиака могут восстанавливаться нитраты простейшими микроорганизмами рубца на стадии промежуточного обмена азота. Благодаря этому можно использовать мочевину и аммонийсодержащие соединения в качестве пищевых добавок в рационах жвачных животных для восполнения белка и оптимизации азотистого баланса. Известно, что мочевина постоянно присутствует в кровотоке жвачных животных, но при быстром ее поступлении в кровь и достижении опасных концентраций она выводится почками, а при небольших концентрациях экскре-тируется слюнными железами и со слюной поступает в рубец, где вновь подвергается микробному метаболизму. Другая группа азот-
содержащих веществ в рубцовом содержимом представлена нуклеиновыми кислотами, которые быстро расщепляются ферментами микроорганизмов до мономеров и используются микроорганизмами рубца для белоксинтетической деятельности.
Источники азота, быстро образующие аммиак, способствуют перевариванию целлюлозы и крахмала, поскольку он необходим для питания и размножения целлюлозолитических и амилолити-ческих бактерий. Для синтеза аминокислот из аммиака необходимы углеродный скелет и энергия, при этом микроорганизмы способны использовать различные источники углерода (углеводы, изо-валериановую кислоту, ацетат и другие летучие жирные кислоты). Синтез определенных аминокислот требует специфичных углеродных скелетов: изовалериат для лейцина, 2-метилбутират для изолейцина, изобутират для валина, фенилацетат для фенилала-нина, индол-3-ацетат для триптофана. Наряду с синтезом аминокислот в рубце происходит всасывание аммиака при его концентрации 7 мг%. Аммиак с кровотоком поступает в печень, где он используется для синтеза мочевины. Аммиак в ионной форме — ион аммония не способен адсорбироваться клеточной мембраной, и только при повышении рН ионы аммония, превращаясь в аммиак, быстро всасываются за счет легкого проникновения через клеточную мембрану. Некоторое количество аммиака может трансформироваться в мочевину и в слизистой оболочке рубца.
Второй этап. Промежуточный обмен белков начинается в печени, куда поступают всосавшиеся в желудочно-кишечном тракте аминокислоты. Здесь происходит их трансформация — дезаминиро-вание, переаминирование (или трансаминирование), декарбоксили-рование при участии специфических ферментов и образование новых аминокислот с отщеплением амино- и кетогруппы. Безазотистые остатки аминокислот используются в синтезе жиров, углеводов и других метаболически значимых соединений. В процессе промежуточного обмена аминокислот образуются и физиологически активные соединения: при декарбоксилировании — амины (катехолами-ны, гистамин, серотонин) и гамма- аминомасляная кислота.
Начальным звеном биосинтеза белков является транспорт их из крови в клетки, где свободные аминокислоты образуют комплексные соединения с АТФ и тРНК и доставляются к рибосомам. Структурные компоненты клетки рибосомы (или их объединение полисомы) «сшивают» аминокислоты в определенной последовательности и формируют первичную полипептидную цепь. Дальнейшие внутриклеточные превращения полипептидной цепи (приобретение вторичной и третичной структуры за счет включения в состав молекулы фосфатных и кальциевых сшивок) определяют конечный результат белкового синтеза — появление специфичного белка с определенной молекулярной массой и характерными свойствами. Наряду с синтезом новых белковых молекул в клетке возможна деградация новообразованного белка под дей-
434
28*
435
ствием протеиназ, которые являются эндопептидазами и локализуются в основном в лизосомах. Если клетка выработала излишнее количество белка или его выведение затруднительно, то включается внутриклеточная система деградации белка, активируются хранители гидролитических ферментов (лизосомы) и цитоплазма освобождается от белковых «излишков».
Третий этап. Конечными продуктами белкового обмена являются диоксид углерода, вода и азотсодержащие вещества — мочевина, мочевая кислота, аммиак, креатинин, гиппуровая кислота и индикан. Эти продукты должны быть выведены из организма либо обезврежены в ходе дальнейших метаболических реакций. Так, часть аммиака обезвреживается за счет образования глютами-новой кислоты и глютамина либо преобразовывается в менее токсичный продукт — мочевину. Удаление печени — основного моче-винобразовательного органа — приводит к аммиачному отравлению, которое сказывается прежде всего на состоянии ЦНС. Мочевая кислота, являющаяся конечным продуктом обмена нуклеиновых кислот, как и мочевина, выводится из организма через почки. Некоторые количества аммиака могут связываться непосредственно в почках с образованием аммонийных солей.
В кишечнике под влиянием гнилостных бактерий белок пищи может преобразовываться в индол и скатол, которые, поступая в кровь, инактивируются за счет связывания с серной кислотой. Образовавшиеся индоксил-серная (индикан) и скатоксил-серная кислоты выводятся с мочой.
При нарушении образования мочевины в печени или прекращении выведения продуктов белкового обмена в организме развивается гиперазотемия — накопление в крови аммиака, аминокислот и полипептидов. Переизбыток полипептидов вызывает значительное падение кровяного давления (пептонный шок), замедление сердечной деятельности и увеличение проницаемости капилляров. Эта реакция обусловлена высвобождением значительных количеств гистамина, который вызывает сосудистые расстройства и увеличение кровенаполнения печени за счет сужения печеночных вен, спазм сосудов селезенки и уменьшение объема кровотока почек. Накопление крови в печени и изменения в почках сопровождаются замедлением свертываемости крови. В дальнейшем развивается порозность капилляров, в крови увеличивается уровень калия, а кальция снижается. Падение активности холин-эстеразы приводит к изменению активности вегетативной нервной системы. При нарушении деятельности почек в моче накапливаются до опасных пределов мочевина и индикан, а в крови появляются фенол, паракрезол и другие токсические продукты, что приводит к тяжелому отравлению организма (уремия). Наряду с почками выведение конечных продуктов белкового обмена осуществляется желудочно-кишечным трактом, потовыми железами и, в' меньшей степени, через легкие с выдыхаемым воздухом.
- Москва «КолосС» 2004
- Глава 1 регуляция физиологических функций
- 1.1. Понятие о гомеостазе
- 1.2. Гуморальные и нервные механизмы регуляции функций
- 1.3. Единство нервной и гуморальной регуляции
- 1.4. Основные принципы регуляции физиологических функций
- Глава 2 физиология возбудимых тканей
- 2.1. Физиология процессов возбуждения в нервной системе
- 2.1.1. Структурные особенности нервных клеток и волокон
- 2.1.2. Электрические явления в возбудимых тканях
- 3 А Рис. 2.3. Опыты Гальвани (а) и Маттеучи (б), доказывающие наличие электрических потенциалов в нервно-мышечном препарате:
- 2.1.2.1. Ультраструктурная организация клеточной мембраны
- 2 Рис. 2.4. Схема регистрации мембранного потенциала (а) и фрагмент клеточной мембраны (б) нервной клетки:
- 2.1.2.2. Потенциал покоя
- 2.1.2.3. Роль активного транспорта ионов в формировании мембранного потенциала
- 2.1.2.4. Механизмы генерации потенциала действия
- 2.1.2.5. Ионные каналы
- 2.1.2.6. Свойства потенциала действия
- 2.1.2.7. Распространение возбуждения
- 2.1.2.8. Передача нервного возбуждения между клетками. Представление о синапсах
- 2.2. Физиологические свойства мыщц
- 2.2.1 .Структурные основы сокращения мышц. Поперечнополосатые мышцы
- 2.2.2. Теория скольжения нитей
- 2.2.3. Электромеханическое скольжение
- 2.2.4. Механика мышцы
- 2.2.5. Метаболические группы поперечнополосатых мышц. Гладкие мышцы
- Глава 3 физиология системы крови
- 3.1. Значение и функции крови
- 3.2. Количество крови в организме
- 3.3. Состав крови
- 3.4. Физико-химические свойства крови
- 3.5. Гемостаз и свертывание крови
- 3.1. Плазменные факторы свертывания крови
- 3.6. Форменные элементы крови
- 3.7. Регуляция кроветворения
- 3.8. Группы крови
- 3.2. Распределение агглютиногенов и агглютининов в крови системы аво
- Глава 4 физиология иммунной системы
- 4.1. Структура иммунной системы
- 4.1.1. Центральные органы иммунной системы
- 4.1.2. Периферические органы иммунной системы
- 4.1.3. Клетки иммунной системы
- 4.2. Индукция и регуляция иммунного ответа
- 4.2.1. Антигены
- 4.2.2. Активация лимфоцитов
- 4.2.3. Иммунный ответ гуморального типа
- 4.2.4. Антитела
- 4.2.5. Иммунный ответ клеточного типа
- 4.3. Факторы естественной резистентности
- 4.3.1. Естественные барьеры
- 4.3.2. Система фагоцитов
- III стадия n стадия
- 4.3.3. Система комплемента, пропердин
- 4.3.4. Лизоцим
- 4.3.5. Интерфероны
- 4.3.6. Взаимодействие антиген—антитело
- Глава 5 физиология пищеварения
- 5.1. Сущность процесса пищеварения
- 5.2. Физиологические основы голода и насыщения
- 5.3. Методы исследования деятельности пищеварительного тракта
- 5.4. Пищеварение в ротовой полости
- 5.5. Пищеварение в желудке
- 5.1. Функциональное значение секреторных клеток желудка
- Желудочка по Гейденгайну (а) и и. П. Павлову (б):
- 5.6. Особенности желудочного пищеварения у некоторых видов животных
- 5.7. Пищеварение в тонком кишечнике
- 5.8. Пищеварение в толстом кишечнике
- 5.9. Всасывание
- Ние. 5.15. Схематическое изображение функционирования сократительной системы апикальной части эпителиальных клеток тонкой кишки
- 5.2. Гормоны желудочно-кишечного тракта
- 5.11. Пищеварение у птиц
- Глава 6 физиология кровообращения
- 6.1. Физиология сердца
- 6.2. Свойства сердечной мышцы
- 6.3. Сердечный цикл и клапанный аппарат сердца
- 6.1. Частота сокращений сердца в 1 мин
- 6.4. Физические явления, связанные с работой сердца
- 6.2. Систолический и минутный объемы крови у животных
- 6.5. Регуляция работы сердца
- 6.6. Движение крови по кровеносным сосудам
- 6.3. Величина артериального давления у животных, мм рт. Ст.
- 6.7. Регуляция движения крови по сосудам
- 6.8. Особенности кровообращения при различных состояниях организма
- Глава 7 физиология дыхания
- 7.1. Внешнее дыхание
- 7.3. Изменение давления в грудной полости при дыхании:
- 7.1. Частота дыхательных движений в 1 мин
- 7.2. Газообмен в легких
- 7.3. Транспорт газов кровью, газообмен в тканях
- 7.4. Регуляция дыхания
- Сосудистых
- 7.5. Особенности дыхания у птиц
- Глава 8 физиология выделительных процессов
- 8.1. Выделительная функция почек
- 8.2. Структурная организация почек
- 8.3. Мочеобразование
- 8.1. Концентрирующая способность почки
- 8.4. Гомеостатическая функция почек
- 8.2. Факторы, влияющие на клубочковую фильтрацию
- 8.3. Факторы, регулирующие канальцевую реабсорбцию
- 8.5. Регуляция процессов образования мочи
- 8.6. Состав и свойства конечной мочи
- 8.4. Объем мочи, выделяемой за сутки
- 8.7. Механизмы выведения мочи
- 8.8. Выделительная функция кожи
- Глава 9 физиология размножения
- 9.1. Половое созревание и половая зрелость
- 9.1. Половая и физиологическая зрелость самки
- 9.2. Физиология репродуктивной системы самцов
- 9.2. Средние количественные показатели спермы
- 9.3. Физиология репродуктивной системы самок
- 9.3. Особенности половых циклов
- 9.4. Оплодотворение
- 9.5. Беременность
- 9.6. Различные типы плацент у млекопитающих:
- 9.6. Роды
- 9.4. Продолжительность родов
- 9.7. Послеродовой период
- 9.8. Трансплантация зародышей у животных
- 9.9. Особенности размножения птиц
- Глава 10 физиология лактации
- 10.1. Развитие молочной железы
- 10.1. Химический состав секретов молочной железы, %
- 10.2. Тип плацентации и пассивная передача иммунитета (X -о — отсутствие передачи)
- 10.4. Пассивный перенос материнских антител
- 10.3. Передача пассивного иммунитета
- 10.2. Биосинтез основных компонентов молока
- 10.3. Физико-химические показатели молока
- 10.4. Структурная организация секреторного процесса
- 10.5. Регуляция секреции молока
- 10.6. Выведение молока
- 10.7. Физиологические основы машинного доения
- Глава 11 физиология обмена веществ и энергии
- 11.1. Терморегуляция
- 11.1. Ректальная температура у различных видов животных
- 11.2. Белковый (азотистый) обмен
- 11.2.1. Основные этапы белкового обмена
- 11.2.2. Регуляция белкового обмена
- 11.3. Углеводный обмен
- 11.3.1. Основные этапы углеводного обмена
- 11.3.2. Регуляция углеводного обмена
- 11.4. Липидный обмен
- 11.4.1. Основные этапы липидного обмена
- 11.4.2. Регуляция липидного обмена
- 11.5. Обмен воды
- 11.2. Концентрация электролитов в жидкостях организма, мэкв/л
- 11.6. Минеральный обмен
- 11.6.1. Физиологическая роль макроэлементов
- 11.6.2. Физиологическая роль микроэлементов
- 11.6.3. Регуляция минерального обмена
- 11.7. Витамины
- 11.7.1. Жирорастворимые витамины
- 11.7.2. Водорастворимые витамины
- 12.1. Механизмы взаимодействия гормона с клетками
- 12.2. Общие механизмы регуляции внутренней секреции
- 12.1. Нейрогормоны гипоталамо-гипофизарной системы
- 12.3. Гипофиз
- 12.4. Щитовидная железа
- 12.5. Надпочечники
- 12.6. Поджелудочная железа. Внутренняя секреция
- 12.7. Эндокринная функция половых желез
- 12.8. Тимус
- 12.9. Эпифиз
- 12.10. Тканевые гормоны
- 12.11. Гормоны и продуктивность животных
- Глава 13
- 13.1. Нейроны и синапсы
- 13.2. Рефлекторная деятельность
- 13.3. Свойства нервных центров
- 13.4. Координация рефлекторных процессов
- 13.5. Частная физиология
- 13.5.1. Спинной мозг
- Ного мозга по Рекседу. Цифрами обозначены слои нерв пых клеток
- 13.5.2. Продолговатый мозг и варолиев мост
- 13.5.3. Средний мозг
- 13.5.4. Ретикулярная формация
- 13.5.5. Мозжечок
- 13.5.6. Промежуточный мозг
- 13.5.7. Подкорковые ядра
- 13.6. Физиология вегетативной нервной системы
- 13.1. Строение и функции симпатической и парасимпатической нервных систем
- Глава 14
- 14.1. Понятие о нервизме
- 14.2. Методы исследования функций коры больших полушарий
- 14.3. Характеристика условных рефлексов и механизм их образования
- Слуховая
- 14.4. Торможение условных рефлексов
- 14.5. Взаимоотношения возбуждения и торможения в коре больших полушарий
- 14.6. Типы высшей нервной деятельности
- 14.7. Сон и гипноз
- 14.8. Две сигнальные системы действительности
- 14.9. Теория функциональных систем
- Глава 15 физиология анализаторов
- 15.1. Рецепторные клетки — начальное звено анализатора
- 15.2. Двигательный анализатор
- 15.2.1. Мышечное веретено
- 15.2.2. Сухожильный рецептор гольджи
- 15.2.3. Рефлекс на растяжение мышцы
- 15.3. Кожный анализатор
- 15.3.1. Механорецепторы кожи
- 15.3.2. Терморецепторы кожи
- 15.3.3. Болевые рецепторы кожи
- 15.4. Обонятельный анализатор
- Рецептора:
- 15.5. Вкусовой анализатор
- 15.6. Слуховой анализатор
- Активности:
- 15.7. Анализатор положения тела в пространстве
- 15.8. Зрительный анализатор
- 15.8.1. Структура и функция сетчатки
- 15.8.2. Цветовое зрение
- 15.8.3. Переработка зрительных сигналов в сетчатке
- 15.8.4. Защитный аппарат глаза
- 15.9. Анализаторы внутренней среды opi лии 1мл
- 15.9.1. Висцеральные механорецепторы
- 15.9.2. Висцеральные терморецепторы
- 15.9.3. Висцеральные хеморецепторы
- 15.9.4. Болевые висцеральные рецепторы
- Глава 16 этология
- 16.1. Формы поведения
- 16.2. Поведенческие реакции
- 16.3. Факторы, влияющие на поведение
- Оглавление
- Глава 1. Регуляция физиологических функций (т. А. Эйсымонт) 17
- Глава 2. Физиология возбудимых тканей (к п. Алексеев) 27
- Глава 7. Физиология дыхания (т. А. Эйсымонт) 291
- Глава 9. Физиология размножения (и. О. Боголюбова) 351
- Глава 10. Физиология лактации (в. Г. Скопичев) 392
- Глава 12. Физиология эндокринной системы (в. Г. Скопичев) 483
- Глава 13. Физиология центральной нервной системы (а. И. Енукашвили) 544
- Глава 15. Физиология анализаторов (н.П.Алексеев) 628
- Глава 16. Этология (т.А. Эйсымонт).., 697
- 214000, Г. Смоленск, проспект им. Ю. Гагарина, 2.