Сосудистых
рефлексогенных
Продолговатый /j* мозг '•**"
(дыхательный центр)
Сигнализация с
дыхательного
аппарата
(дыхательные пути,
плевра, легкие)
Диафрагма
, Межреберные мышцы
Грудной отдел спинного мозга
Рис. 7.7. Схема организации центрального аппарата регуляции дыхания
дыхание сохраняется за счет сокращений диафрагмы, потому что центр диафрагмального нерва расположен в 3...5-M шейных сегментах спинного мозга.
Выше продолговатого мозга, прилегая к нему, находится варолиев мост, в котором расположен «пневмотаксический центр». Он не обладает автоматией, но благодаря непрерывной активности обеспечивает периодическую деятельность дыхатель-
310
ного центра, увеличивает скорость развития инспираторной и экспираторной импульсаций в нейронах продолговатого мозга.
Средний мозг имеет большое значение в регуляции тонуса поперечнополосатых мышц. Поэтому при сокращении различных мышц афферентная импульсация от них поступает в средний мозг, который соответственно мышечной нагрузке изменяет характер дыхания. Средний мозг ответствен также за координацию дыхания с актами глотания, рвоты и отрыгивания. Во время глотания дыхание задерживается на фазе выдоха, надгортанник закрывает вход в гортань. При рвоте, отрыгивании газов происходит «холостой вдох» — вдох при закрытой гортани. При этом сильно снижается внутриплевральное давление, что и способствует поступлению содержимого из желудка в грудную часть пищевода.
Гипоталамус — отдел промежуточного мозга. Значение гипоталамуса в регуляции дыхания заключается в том, что в нем содержатся центры, контролирующие все виды обмена веществ (белковый, жировой, углеводный, минеральный), и центр тепло-регуляции. Поэтому усиление обмена веществ, повышение температуры тела ведут к усилению дыхания. Например, при повышении температуры тела дыхание учащается, что способствует увеличению отдачи теплоты вместе с выдыхаемым воздухом и предохраняет организм от перегревания (тепловая одышка).
Гипоталамус принимает участие в изменении характера ды хания при болевых раздражениях, при различных поведенчес ких актах (прием корма, обнюхивание, спаривание и др.). По мимо регуляции частоты и глубины дыхания гипоталамус через вегетативную нервную систему регулирует просвет бронхиол, спадение нефункционирующих альвеол, степень расширения легочных сосудов, проницаемость легочного эпителия и стенок капилляров. /
Многогранно значение коры больших полушарий головного мозга в регуляции дыхания. В коре расположены центральные отделы всех анализаторов, информирующих как о внешних воздействиях, так и о состоянии внутренней среды организма. Поэтому наиболее тонкое приспособление дыхания к сиюминутным потребностям организма осуществляется при обязательном участии высших отделов нервной системы.
Особое значение имеет кора больших полушарий при мышечной работе. Известно, что учащение дыхания начинается за несколько секунд до начала работы, сразу после команды «приготовиться». Аналогичное явление наблюдается у спортивных лошадей наряду с тахикардией. Причиной подобных «опережающих» реакций у людей и животных являются выработавшиеся в результате повторных тренировок условные рефлексы. Только влиянием коры больших полушарий можно объяснить произвольные, волевые изменения ритма, частоты и глубины дыхания. Человек может произвольно задержать дыхание на несколько секунд или усилить
311
его. Несомненна роль коры в изменении паттерна дыхания во время подачи голоса, при нырянии, обнюхивании.
Итак, в регуляции внешнего дыхания участвует дыхательный центр. Ядро этого центра, находящееся в продолговатом мозге, посылает ритмичные импульсы через спинной мозг к дыхательным мышцам. Сам же бульварный отдел дыхательного центра находится под постоянным воздействием со стороны вышележащих отделов ЦНС и различных рецепторов — пульмональных, сосудистых, мышечных и др.
Значение рецепторов легких в регуляции дыхания. В легких имеются три группы рецепторов: растяжения и спадения; ирритантные; юкстакапиллярные.
Рецепторы растяжения расположены между гладкими мышцами в воздухоносных путях — вокруг трахеи, бронхов и бронхиол, а в альвеолах и плевре отсутствуют. Растяжение легких при вдохе вызывает возбуждение механорецепторов. Возникающие потенциалы действия передаются по центростремительным волокнам блуждающего нерва в продолговатый мозг. К концу вдоха частота импульсации нарастает от 30 до 100 импульсов в 1 с и становится пессимальной, вызывая торможение центра вдоха. Начинается выдох. Рецепторы спадения легких изучены недостаточно. Возможно, при спокойном дыхании их значение невелико.
Рефлексы с механорецепторов легких названы по имени открывших их ученых — рефлексы Геринга — Брейера. Назначение этих рефлексов заключается в следующем: информировать дыхательный центр о состоянии легких, их наполненности воздухом и в соответствии с этим регулировать последовательность вдоха и выдоха, ограничивать чрезмерное растяжение легких при вдохе или спадение легких при выдохе. У новорожденных рефлексы с механорецепторов легких играют большую роль; с возрастом значение их уменьшается.
Рис. 7.8. Влияние двусторонней пере резки блуждающего нерва на дыхание
/—до перерезки; //■
- после перерезки
Таким образом, значение блуждающего нерва в регуляции дыхания заключается в передаче афферентных импульсов от механорецепторов легких в дыхательный центр. У животных после перерезки вагуса информация от легких не попадает в продолговатый мозг, поэтому дыхание становится медленным, с коротким вдохом и очень продолжительным выдохом (рис. 7.8). При раздражении вагуса наблюдается задержка дыхания в зависимости от того, в какую фазу дыхательного
цикла действует раздражение. Если раздражение поступает во время вдоха, то вдох преждевременно прекращается и сменяется выдохом, а если совпадает с фазой выдоха, то, наоборот, выдох сменяется вдохом (рис. 7.9).
Ирритантные рецепторы расположены в эпителиальном и субэпителиальном слоях всех воздухоносных путей. Они раздражаются при попадании в воздухоносные пути пыли, ядовитых газов, а также при достаточно больших изменениях объема легких. Некоторая часть ирритантных рецепторов возбуждается при обычных вдохах и выдохах. Рефлексы с ирритантных рецепторов носят защитный характер — чихание, кашель, глубокий вдох («вздох»). Центры данных рефлексов расположены в продолговатом мозге.
Юкстакапиллярные рецепторы (юкста — вокруг) находятся вблизи капилляров малого круга кровообращения. По функциям они сходны с рецепторами спадения, для них раздражителем является увеличение интерстициального пространства легких, например при отеке. Раздражение юкстакапилляр-ных рецепторов вызывает одышку. Возможно, при интенсивной мышечной работе кровяное давление в легочных сосудах повышается, это увеличивает объем интерстициальной жидкости и стимулирует активность юкстакапиллярных рецепторов. Раздражителем пульмональных рецепторов может быть гистамин, синтезирующийся в базофилах и тучных клетках. В легких этих клеток довольно много, и при аллергических заболеваниях они выделяют гистамин в таком количестве, что это приводит к отеку и одышке.
Значение рецепторов дыхательных мышц. В дыхательных мышцах имеются рецепторы растяжения — мышечные веретена, сухожильные рецепторы. Особенно велика плотность их размещения в межреберных мышцах и мышцах стенок живота. Механорецепто-ры дыхательных мышц возбуждаются при их сокращении или растяжении при вдохе или выдохе. По принципу обратной связи они регулируют возбуждение мотонейронов спинного мозга в зависимости от их исходной длины и сопротивления, которое они встре-
312
313
чают при сокращении. Сильное раздражение механорецепторов грудной клетки (например, при ее сжатии) вызывает торможение инспираторной деятельности дыхательного центра.
Значение хеморецепторов в регуляции дыхания. Исключительно важное значение в регуляции внешнего дыхания имеет газовый состав артериальной крови. Биологическая целесообразность этого вполне понятна, поскольку от содержания кислорода и диоксида углерода в артериальной крови зависит обмен газов между кровью и тканями. Давно стали классикой опыты Фредерика (1890) с перекрестным кровообращением, когда артериальная кровь от одной собаки поступала в кровь другой, а венозная кровь от головы второй собаки — в венозную кровь первой собаки (рис. 7.10). Если пережать трахею и тем самым остановить дыхание первой собаки, то ее кровь с недостаточным содержанием кислорода и избыточным диоксида углерода омывает головной мозг второй собаки. Дыхательный центр второй собаки усиливает дыхание (гипер-пноэ), и в ее крови снижается концентрация диоксида углерода и урежается дыхание вплоть до остановки (апноэ).
Благодаря опытам Фредерика стало очевидным, что дыхательный центр чувствителен к уровню содержания газов в артериальной крови. Возросшая концентрация диоксида углерода (гипер-капния) и водородных ионов в крови вызывает учащение дыхания, вследствие чего диоксид углерода выделяется с выдыхаемым воздухом и его концентрация в крови восстанавливается. Снижение содержания диоксида углерода в крови (гипокапния), напротив, вызывает урежение дыхания или его остановку до тех пор, пока в крови концентрация диоксида углерода снова не достигнет нормальной величины (нормокапния).
Концентрация кислорода в крови также влияет на возбудимость дыхательного центра, но в меньшей мере, чем диоксида углерода. Это связано с тем, что при обычных колебаниях атмосферного давления, даже на высотах до 2000 м над уровнем моря, почти весь гемоглобин превращается в оксигемоглобин, поэтому парциальное давление кислорода в артериальной крови всегда выше, чем в тканевой жидкости, и ткани получают, во всяком случае в
состоянии физиологического покоя, достаточно кислорода. При значительном снижении парциального давления кислорода в воздухе уменьшается содержание кислорода в крови (гипоксемия) и в тканях (гипоксия), в результате этого возбудимость дыхательного центра повышается и дыхание учащается.
Снижение концентрации кис-Рис. 7.10. Перекрестное кровообращение лорода В крови (гипоксемия) МО-
жет произойти и вследствие более интенсивного потребления его тканями. В этом случае возможно развитие кислородной недостаточности, что, в свою очередь, вызовет усиление внешнего дыхания. При повышении содержания кислорода в крови, например при вдыхании газовой смеси с высоким содержанием кислорода или при нахождении в барокамере под высоким атмосферном давлении, вентиляция легких уменьшается за счет угнетения дыхательного центра.
Мы рассмотрели в отдельности значение содержания кислорода и диоксида углерода в артериальной крови, т. е. аналитически. Однако в действительности оба газа влияют на дыхательный центр одновременно. Установлено, что гипоксия повышает чувствительность дыхательного центра к повышенному содержанию диоксида углерода, и усиление дыхания в этих условиях является интегральной реакцией дыхательного центра в ответ на изменение газового состава крови. Так, при физической работе в мышцы поступает больше кислорода из притекающей крови, увеличивается коэффициент утилизации кислорода, а его концентрация в крови снижается. Одновременно в результате повышения метаболизма из мышц в кровь поступает больше углекислоты и органических кислот.
Велика роль сосудистых хеморецепторов при первом вдохе новорожденного. Снижение содержания кислорода в крови и увеличение диоксида углерода во время родов, особенно после пережатия пуповины, является главнейшим раздражителем дыхательного центра, что и вызывает первый вдох.
Если в течение 1 мин произвольно максимально усилить дыхание и вызвать этим гипервентиляцию легких, то заметно удлиняется дыхательная пауза между выдохом и последующим вдохом. Может наступить кратковременное апноэ — остановка дыхания на 1...2 мин. Без предшествующей гипервентиляции задержать дыхание можно лишь на 20...30 с. Подобную гипервентиляцию легких с последующим апноэ вызывают у себя ныряльщики — охотники за жемчугом или губкой. После длительных тренировок они остаются под водой до 4...5 мин.
Попробуем разобраться в механизмах апноэ после одышки. Поскольку при обычном спокойном дыхании кровь насыщена кислородом на 95 %, усиление дыхания не приводит к значительному увеличению концентрации кислорода в крови. На содержание же диоксида углерода гипервентиляция оказывает заметное влияние — уровень диоксида углерода снижается сначала в альвеолярном воздухе, а затем в крови. Следовательно, апноэ после гипервентиляции легких связано с уменьшением концентрации углекислоты в крови. Дыхание восстановится, когда в крови снова накопится достаточный, или пороговый, уровень диоксида углерода.
Если задержать дыхание на 20...30 с, то наступает неудержимое стремление вздохнуть и сделать несколько глубоких дыхательных движений. Следовательно, задержка ведет к гиперпноэ — усиле-
314
315
нию дыхания. Это также обусловлено накоплением в крови диоксида углерода, так как за 20...30 с концентрация кислорода в крови снизится незначительно, а диоксид углерода постоянно поступает в кровь из тканей.
Итак, диоксид углерода является главнейшим гуморальным раздражителем дыхательного центра. Изменение его концентрации в крови ведет к таким изменениям в частоте и глубине дыхания, которые восстанавливают постоянный уровень углекислоты в крови. При увеличении уровня диоксида углерода в крови происходит стимуляция дыхательного центра и усиление дыхания, при снижении — уменьшение частоты и глубины дыхания. Поэтому столь эффективен метод искусственного дыхания «изо рта в рот», а в газовые смеси для искусственного дыхания обязательно добавляют диоксид углерода.
Где же находятся те датчики, или рецепторы, которые улавливают концентрацию газов в крови? Они расположены там, где необходим тщательный контроль за газовым составом внутренней среды организма. Такими участками являются сосудистые рефлексогенные зоны каротидного синуса и аорты, а также центральные рефлексогенные зоны в продолговатом мозге.
Синокаротидная зона, или зона каротидного синуса, имеет особо важное значение в отслеживании газового состава и рН крови. Она находится в области разветвления сонных артерий на наружные и внутренние ветви, откуда артериальная кровь направляется в головной мозг. Пороговая концентрация кислорода, углекислоты и водородных ионов для рецепторов синокаротидной зоны соответствует их уровню в крови при нормальных условиях в состоянии покоя. Небольшое возбуждение возникает в отдельных рецепторах при редком глубоком дыхании, когда концентрация газов в крови начинает немного изменяться. Чем сильнее изменяется газовый состав крови, тем большая частота импульсации возникает в хеморецепторах, стимулируя дыхательный центр.
Изменение дыхательных движений происходит не только при раздражении хеморецепторов аорты или каротидного синуса. Раздражение находящихся здесь же баро- или прессорецепторов при повышении артериального давления обычно ведет к замедлению дыхания, а при снижении артериального давления — к его усилению. Однако при физической нагрузке повышение артериального давления не приводит к угнетению дыхания, а также к депрессор-ным рефлексам.
Центральные (медуллярные) хеморецепторы в продолговатом мозге чувствительны к уровню содержания диоксида углерода в цереброспинальной жидкости. Если артериальные хеморецепторы регулируют газовый состав артериальной крови, то центральные хеморецепторы держат под контролем газовый и кислотно-щелочной гомеостаз жидкости, омывающей головной мозг, — наиболее уязвимую ткань организма. Хеморецепторы, чувствительные к из-
менению рН, диоксида углерода и кислорода, имеются также в венозных сосудах и в различных тканях организма. Однако их значение заключается не в регуляции внешнего дыхания, а в изменении регионального, или местного, кровотока.
Большой интерес представляют механизмы изменения дыхания при физической работе: при большой нагрузке частота и сила дыхательных движений увеличиваются, что приводит к гипервентиляции легких. Что является причиной этого? Усиление тканевого дыхания в мышцах приводит к накоплению молочной кислоты до Ю0...200мг/100мл крови (вместо 15...24 в норме) и недостатку кислорода для окислительных процессов. Такое состояние называется кислородной задолженностью. Молочная кислота, являясь более сильной кислотой, чем угольная, вытесняет из бикарбонатов крови диоксид углерода, в результате этого возникает гиперкапния, что усиливает возбудимость дыхательного центра.
Далее при мышечной работе возбуждаются различные рецепторы: проприорецепторы мышц и сухожилий, механорецепторы легких и воздухоносных путей, хеморецепторы сосудистых рефлексогенных зон, рецепторы сердца и др. От этих и других рецепторов афферентная импульсация также достигает дыхательного центра. При мышечной работе повышается тонус симпатического отдела нервной системы, увеличивается содержание катехоламинов в крови, которые стимулируют дыхательный центр и рефлекторно, и непосредственно. При мышечной работе увеличивается теплопродукция, что также ведет к усилению дыхания (тепловая одышка).
Раздражение различных экстерорецепторов приводит к образованию условных рефлексов. Обстановка, в которой обычно совершается работа (ипподром, ландшафт, взнуздывание, появление наездника, а также время суток), является комплексным стереотипом раздражения, подготавливающим лошадь к последующей работе. Наряду с различными поведенческими актами у животного заранее усиливается работа сердца, повышается артериальное давление, перестраивается дыхание и возникают другие вегетативные изменения.
В начале работы энергия мышцам поставляется за счет анаэробных процессов. В дальнейшем этого оказывается недостаточно и тогда возникает новое стационарное состояние («второе дыхание»), при котором увеличивается вентиляция легких, систолический и минутный объем сердца, кровоток в работающих мышцах.
Таким образом, регуляция дыхания включает два механизма: регуляцию внешнего дыхания, направленную на обеспечение оптимального содержания кислорода и диоксида углерода в крови, т. е. адекватного тканевому метаболизму, и регуляцию кровообращения, создающую наилучшие условия обмена газов между кровью и тканями.
316
317
В регуляции вдоха и выдоха большее значение имеют авто-матия дыхательного центра и афферентные импульсы от меха-норецепторов легких и дыхательных мышц, а в регуляции частоты и глубины дыхания — газовый состав крови, цереброспинальной жидкости и афферентные импульсы от хеморецепто-ров кровеносных сосудов, тканей и медуллярных (бульбарных) хеморецепторов.
- Москва «КолосС» 2004
- Глава 1 регуляция физиологических функций
- 1.1. Понятие о гомеостазе
- 1.2. Гуморальные и нервные механизмы регуляции функций
- 1.3. Единство нервной и гуморальной регуляции
- 1.4. Основные принципы регуляции физиологических функций
- Глава 2 физиология возбудимых тканей
- 2.1. Физиология процессов возбуждения в нервной системе
- 2.1.1. Структурные особенности нервных клеток и волокон
- 2.1.2. Электрические явления в возбудимых тканях
- 3 А Рис. 2.3. Опыты Гальвани (а) и Маттеучи (б), доказывающие наличие электрических потенциалов в нервно-мышечном препарате:
- 2.1.2.1. Ультраструктурная организация клеточной мембраны
- 2 Рис. 2.4. Схема регистрации мембранного потенциала (а) и фрагмент клеточной мембраны (б) нервной клетки:
- 2.1.2.2. Потенциал покоя
- 2.1.2.3. Роль активного транспорта ионов в формировании мембранного потенциала
- 2.1.2.4. Механизмы генерации потенциала действия
- 2.1.2.5. Ионные каналы
- 2.1.2.6. Свойства потенциала действия
- 2.1.2.7. Распространение возбуждения
- 2.1.2.8. Передача нервного возбуждения между клетками. Представление о синапсах
- 2.2. Физиологические свойства мыщц
- 2.2.1 .Структурные основы сокращения мышц. Поперечнополосатые мышцы
- 2.2.2. Теория скольжения нитей
- 2.2.3. Электромеханическое скольжение
- 2.2.4. Механика мышцы
- 2.2.5. Метаболические группы поперечнополосатых мышц. Гладкие мышцы
- Глава 3 физиология системы крови
- 3.1. Значение и функции крови
- 3.2. Количество крови в организме
- 3.3. Состав крови
- 3.4. Физико-химические свойства крови
- 3.5. Гемостаз и свертывание крови
- 3.1. Плазменные факторы свертывания крови
- 3.6. Форменные элементы крови
- 3.7. Регуляция кроветворения
- 3.8. Группы крови
- 3.2. Распределение агглютиногенов и агглютининов в крови системы аво
- Глава 4 физиология иммунной системы
- 4.1. Структура иммунной системы
- 4.1.1. Центральные органы иммунной системы
- 4.1.2. Периферические органы иммунной системы
- 4.1.3. Клетки иммунной системы
- 4.2. Индукция и регуляция иммунного ответа
- 4.2.1. Антигены
- 4.2.2. Активация лимфоцитов
- 4.2.3. Иммунный ответ гуморального типа
- 4.2.4. Антитела
- 4.2.5. Иммунный ответ клеточного типа
- 4.3. Факторы естественной резистентности
- 4.3.1. Естественные барьеры
- 4.3.2. Система фагоцитов
- III стадия n стадия
- 4.3.3. Система комплемента, пропердин
- 4.3.4. Лизоцим
- 4.3.5. Интерфероны
- 4.3.6. Взаимодействие антиген—антитело
- Глава 5 физиология пищеварения
- 5.1. Сущность процесса пищеварения
- 5.2. Физиологические основы голода и насыщения
- 5.3. Методы исследования деятельности пищеварительного тракта
- 5.4. Пищеварение в ротовой полости
- 5.5. Пищеварение в желудке
- 5.1. Функциональное значение секреторных клеток желудка
- Желудочка по Гейденгайну (а) и и. П. Павлову (б):
- 5.6. Особенности желудочного пищеварения у некоторых видов животных
- 5.7. Пищеварение в тонком кишечнике
- 5.8. Пищеварение в толстом кишечнике
- 5.9. Всасывание
- Ние. 5.15. Схематическое изображение функционирования сократительной системы апикальной части эпителиальных клеток тонкой кишки
- 5.2. Гормоны желудочно-кишечного тракта
- 5.11. Пищеварение у птиц
- Глава 6 физиология кровообращения
- 6.1. Физиология сердца
- 6.2. Свойства сердечной мышцы
- 6.3. Сердечный цикл и клапанный аппарат сердца
- 6.1. Частота сокращений сердца в 1 мин
- 6.4. Физические явления, связанные с работой сердца
- 6.2. Систолический и минутный объемы крови у животных
- 6.5. Регуляция работы сердца
- 6.6. Движение крови по кровеносным сосудам
- 6.3. Величина артериального давления у животных, мм рт. Ст.
- 6.7. Регуляция движения крови по сосудам
- 6.8. Особенности кровообращения при различных состояниях организма
- Глава 7 физиология дыхания
- 7.1. Внешнее дыхание
- 7.3. Изменение давления в грудной полости при дыхании:
- 7.1. Частота дыхательных движений в 1 мин
- 7.2. Газообмен в легких
- 7.3. Транспорт газов кровью, газообмен в тканях
- 7.4. Регуляция дыхания
- Сосудистых
- 7.5. Особенности дыхания у птиц
- Глава 8 физиология выделительных процессов
- 8.1. Выделительная функция почек
- 8.2. Структурная организация почек
- 8.3. Мочеобразование
- 8.1. Концентрирующая способность почки
- 8.4. Гомеостатическая функция почек
- 8.2. Факторы, влияющие на клубочковую фильтрацию
- 8.3. Факторы, регулирующие канальцевую реабсорбцию
- 8.5. Регуляция процессов образования мочи
- 8.6. Состав и свойства конечной мочи
- 8.4. Объем мочи, выделяемой за сутки
- 8.7. Механизмы выведения мочи
- 8.8. Выделительная функция кожи
- Глава 9 физиология размножения
- 9.1. Половое созревание и половая зрелость
- 9.1. Половая и физиологическая зрелость самки
- 9.2. Физиология репродуктивной системы самцов
- 9.2. Средние количественные показатели спермы
- 9.3. Физиология репродуктивной системы самок
- 9.3. Особенности половых циклов
- 9.4. Оплодотворение
- 9.5. Беременность
- 9.6. Различные типы плацент у млекопитающих:
- 9.6. Роды
- 9.4. Продолжительность родов
- 9.7. Послеродовой период
- 9.8. Трансплантация зародышей у животных
- 9.9. Особенности размножения птиц
- Глава 10 физиология лактации
- 10.1. Развитие молочной железы
- 10.1. Химический состав секретов молочной железы, %
- 10.2. Тип плацентации и пассивная передача иммунитета (X -о — отсутствие передачи)
- 10.4. Пассивный перенос материнских антител
- 10.3. Передача пассивного иммунитета
- 10.2. Биосинтез основных компонентов молока
- 10.3. Физико-химические показатели молока
- 10.4. Структурная организация секреторного процесса
- 10.5. Регуляция секреции молока
- 10.6. Выведение молока
- 10.7. Физиологические основы машинного доения
- Глава 11 физиология обмена веществ и энергии
- 11.1. Терморегуляция
- 11.1. Ректальная температура у различных видов животных
- 11.2. Белковый (азотистый) обмен
- 11.2.1. Основные этапы белкового обмена
- 11.2.2. Регуляция белкового обмена
- 11.3. Углеводный обмен
- 11.3.1. Основные этапы углеводного обмена
- 11.3.2. Регуляция углеводного обмена
- 11.4. Липидный обмен
- 11.4.1. Основные этапы липидного обмена
- 11.4.2. Регуляция липидного обмена
- 11.5. Обмен воды
- 11.2. Концентрация электролитов в жидкостях организма, мэкв/л
- 11.6. Минеральный обмен
- 11.6.1. Физиологическая роль макроэлементов
- 11.6.2. Физиологическая роль микроэлементов
- 11.6.3. Регуляция минерального обмена
- 11.7. Витамины
- 11.7.1. Жирорастворимые витамины
- 11.7.2. Водорастворимые витамины
- 12.1. Механизмы взаимодействия гормона с клетками
- 12.2. Общие механизмы регуляции внутренней секреции
- 12.1. Нейрогормоны гипоталамо-гипофизарной системы
- 12.3. Гипофиз
- 12.4. Щитовидная железа
- 12.5. Надпочечники
- 12.6. Поджелудочная железа. Внутренняя секреция
- 12.7. Эндокринная функция половых желез
- 12.8. Тимус
- 12.9. Эпифиз
- 12.10. Тканевые гормоны
- 12.11. Гормоны и продуктивность животных
- Глава 13
- 13.1. Нейроны и синапсы
- 13.2. Рефлекторная деятельность
- 13.3. Свойства нервных центров
- 13.4. Координация рефлекторных процессов
- 13.5. Частная физиология
- 13.5.1. Спинной мозг
- Ного мозга по Рекседу. Цифрами обозначены слои нерв пых клеток
- 13.5.2. Продолговатый мозг и варолиев мост
- 13.5.3. Средний мозг
- 13.5.4. Ретикулярная формация
- 13.5.5. Мозжечок
- 13.5.6. Промежуточный мозг
- 13.5.7. Подкорковые ядра
- 13.6. Физиология вегетативной нервной системы
- 13.1. Строение и функции симпатической и парасимпатической нервных систем
- Глава 14
- 14.1. Понятие о нервизме
- 14.2. Методы исследования функций коры больших полушарий
- 14.3. Характеристика условных рефлексов и механизм их образования
- Слуховая
- 14.4. Торможение условных рефлексов
- 14.5. Взаимоотношения возбуждения и торможения в коре больших полушарий
- 14.6. Типы высшей нервной деятельности
- 14.7. Сон и гипноз
- 14.8. Две сигнальные системы действительности
- 14.9. Теория функциональных систем
- Глава 15 физиология анализаторов
- 15.1. Рецепторные клетки — начальное звено анализатора
- 15.2. Двигательный анализатор
- 15.2.1. Мышечное веретено
- 15.2.2. Сухожильный рецептор гольджи
- 15.2.3. Рефлекс на растяжение мышцы
- 15.3. Кожный анализатор
- 15.3.1. Механорецепторы кожи
- 15.3.2. Терморецепторы кожи
- 15.3.3. Болевые рецепторы кожи
- 15.4. Обонятельный анализатор
- Рецептора:
- 15.5. Вкусовой анализатор
- 15.6. Слуховой анализатор
- Активности:
- 15.7. Анализатор положения тела в пространстве
- 15.8. Зрительный анализатор
- 15.8.1. Структура и функция сетчатки
- 15.8.2. Цветовое зрение
- 15.8.3. Переработка зрительных сигналов в сетчатке
- 15.8.4. Защитный аппарат глаза
- 15.9. Анализаторы внутренней среды opi лии 1мл
- 15.9.1. Висцеральные механорецепторы
- 15.9.2. Висцеральные терморецепторы
- 15.9.3. Висцеральные хеморецепторы
- 15.9.4. Болевые висцеральные рецепторы
- Глава 16 этология
- 16.1. Формы поведения
- 16.2. Поведенческие реакции
- 16.3. Факторы, влияющие на поведение
- Оглавление
- Глава 1. Регуляция физиологических функций (т. А. Эйсымонт) 17
- Глава 2. Физиология возбудимых тканей (к п. Алексеев) 27
- Глава 7. Физиология дыхания (т. А. Эйсымонт) 291
- Глава 9. Физиология размножения (и. О. Боголюбова) 351
- Глава 10. Физиология лактации (в. Г. Скопичев) 392
- Глава 12. Физиология эндокринной системы (в. Г. Скопичев) 483
- Глава 13. Физиология центральной нервной системы (а. И. Енукашвили) 544
- Глава 15. Физиология анализаторов (н.П.Алексеев) 628
- Глава 16. Этология (т.А. Эйсымонт).., 697
- 214000, Г. Смоленск, проспект им. Ю. Гагарина, 2.