Роль принципа энтропии
Современная наука располагает фундаментальными знаниям, позволяющими обнаружить и описать закономерности развития универсума. Для этих целей разработан специальный понятийный аппарат, который, как инструмент в руках хирурга, позволяет точно описать современное состояние и динамику развития универсума. В условиях, далеких от равновесия, действуют бифуркационные механизмы. Они предполагают наличие точек раздвоения и неединственность продолжения развития. Результаты их действия труднопредсказуемы. По мнению И. Пригожина, бифуркационные процессы свидетельствуют об усложнении системы1. Н. Моисеев утверждает, что в принципе каждое состояние социальной системы является бифуркационным. А в глобальных измерениях антропогенеза развитие человечества уже пережило, по крайней мере, две бифуркации. Первая произошла в палеолите и привела к утверждению системы табу. Вторая – в неолите и связана с расширением геологической ниши: освоением земледелия и скотоводства. «Духовный мир, рожденный вместе с разумом, – это результат бифуркации, куда более глубокой, чем мы себе представляем», – утверждал академик Н. Моисеев. Бифуркационные механизмы проявляют себя и в сфере этногенеза, «возникновение, расцвет и закат этносов, как и другие процессы самоорганизации, – это формирование из хаоса тех или других квазистабильных образований, которые однажды неизбежно распадутся, предоставив тем самым материал для нового этапа этногенеза»2.
Можно сделать вывод, что понятие бифуркации уже принято в современном обществоведческом анализе. Поскольку общество предстает как сложная, далекая от равновесия система, его кризисы и переломные эпохи свидетельствуют о приближении к точкам бифуркации – точкам неединственного продолжения развития1. В более широком смысле понятие бифуркации употребляется для обозначения всевозможных качественных сдвигов.
Флуктуации в общем случае означают возмущения и подразделяются на два больших класса: класс флуктуаций, создаваемых внешней средой, и класс флуктуаций, воспроизводимых самой системой. Возможны случаи, когда флуктуации будут столь сильны, что овладеют системой полностью, придав ей свои колебания, и по сути изменят режим ее существования. Они выведут систему из свойственного ей «типа порядка», но обязательно ли к хаосу или к упорядоченности иного уровня – это особый вопрос.
Примечательно, что к идее флуктуации обращался Ч. Дарвин, хотя отводил ей ничтожную роль. «Каждое слабое уклонение в строении, которое было бы почему-либо вредно, беспощадно уничтожалось. А продолжительное накопление благотворных вариаций должно было неизбежно привести к возникновению столь разнообразных, так прекрасно приспособленных к разным целям и так превосходно координированных структур, как те, какие мы видим у окружающих нас животных и растений»2.
Система, по которой рассеиваются возмущения, называется диссипативной. По сути дела – это характеристика поведения системы при флуктуациях, которые охватили ее полностью. Основное свойство диссипативной системы – необычайная чувствительность ко всевозможным воздействиям и в связи с этим чрезвычайная неравновесность.
Понятие энтропии в общем случае указывает на меру хаотизации. Роль энтропии стала очевидной благодаря естественнонаучным открытиям, и в частности, вследствие установления связи между механическим и тепловыми явлениями, открытия принципа сохранения энергии и понятия необратимости. Постоянный обмен энергией, лежащий в основе всех процессов, заставлял задуматься как об ее источнике, так и об угрозе рассеивания. Больцман первым понял, что необратимое возрастание энтропии можно было бы рассматривать как проявление все увеличивающегося молекулярного хаоса, постепенного забывания любой начальной асимметрии. В основе порядка точных физических законов лежала атомная и молекулярная неупорядоченность. Можно было бы предположить, что энтропия свидетельствует о безостановочном соскальзывании системы к состоянию, лишенному какой бы то ни было организации, однако лауреат нобелевской премии И. Пригожин сформулировал теорему о минимуме производства энтропии.
Из теоремы о минимуме производства энтропии следовало, что когда граничные условия мешают системе перейти в состояние равновесия, она делает лучшее из того, что ей остается – переходит в состояние энтропии, которое настолько близко к состоянию равновесия, насколько это позволяют обстоятельства. Иными словами, минимальный рост энтропии как стремление к наименьшей из всех прочих степеней хаотизации – одна из существенных эволюционных особенностей1.
В иной формулировке теорема о минимуме энтропии утверждает, что производство энтропии системой, находящейся в стационарном состоянии, достаточно близком к равновесию, минимально.
Экстраполяция второго начала термодинамики или закона возрастания энтропии (меры хаотизации) на всю Вселенную привела к идее тепловой смерти Вселенной. Второй закон термодинамики, сформулированный Сади Карно в 1829 г., в общем виде указывал на то, что замкнутая система стремится от наименее вероятностного состояния к своему наиболее вероятностному состоянию. Примером из повседневной жизни, разъясняющим это положение, может служить следующая ситуация. Если кипящий чайник убрать с огня, то он будет далее не нагреваться, что было бы наименее вероятностным состоянием, а остывать, что, естественно, более вероятно. Это так. В замкнутой системе происходит выравнивание температур, система стремится к своему термодинамическому равновесию. В физической картине мира принцип возрастания энтропии соответствует одностороннему течению явлений, т.е. в направлении хаоса, беспорядка, дезорганизации.
Однако, заметим, закон рассчитан на замкнутые системы (что удачно отражено в примере), и это является абстракцией огромной силы, так как в мире большинство систем – незамкнутые. Когда второе начало термодинамики было распространено на Вселенную, проинтерпретированную как замкнутая система, по расчетам получалось, что все энергетические процессы должны происходить в одном направлении. Энтропия как физическая величина, характеризующая процессы превращения энергии, возрастала. Иными словами, творился невероятный хаос. Все виды энергии превращались в тепловую, затем они рассеивались в пространстве. Вселенная начинала остывать. Наступление абсолютного теплового равновесия означало тепловую смерть Вселенной.
Суть философской критики этих положений состояла в указании на недопустимость качественного уничтожения движения, невозможность превращения многообразных видов энергии в тепловую. Однако концепция тепловой смерти Вселенной оказывается несостоятельной и с естественнонаучной точки зрения.
Возможность экстраполяции второго начала термодинамики на всю Вселенную предполагает произвольное допущение о ее структуре и, в частности, представление о ее замкнутости, изолированности и однородности, т.е. системы без притока и оттока энергии. Однако Вселенная не является замкнутой системой, она состоит из бесконечного числа частиц и элементов. Земля также принадлежит к открытым системам, она бесконечно получает потоки лучистой энергии, идущей от солнца. Более того, разные части Земли получают и отдают избыток энергии по-разному, что обуславливает дожди, ветры, грозы, ураганы и пр.
Еще античный философ Лукреций Кар в поэме «О природе вещей» прозорливо восклицал:
Нет и краев у нее и нет ни конца, ни предела.
И безразлично, в какой ты находишься части Вселенной:
Где бы ты ни был, везде, с того места, что ты занимаешь,
Все бесконечной она остается во всех направлениях...
В современной релятивистской космологии конкурирует несколько объяснительных моделей Вселенной, однако ни в одной из них состояние термодинамического равновесия для Вселенной неприемлемо.
Понятие энтропии сыграло весьма важную критериальную роль в решении проблемы выявления отличий живого от неживого. Конечно же, на память приходит универсальное определение жизни, возникшее еще во второй половине ХIХ в., которое современная наука не опровергает, а лишь детализирует. «Жизнь – это способ существования белковых тел». Наиболее важными компонентами живого являются белки, аминокислоты, нуклеиновые кислоты. Отличительной способностью живого является воспроизведение, рост и обмен веществ. Способность к самовоспроизведению обеспечивается таким типом химических реакций, который не встречается в неживой природе и называется матричным синтезом. Однако академик В.А. Эндельгард указывает на еще одну существенную характеристику живых систем, а именно способность «создавать порядок из хаоса», т.е. антиэнтропийный характер жизненных процессов. Живые организмы способны творить упорядоченность из хаотического теплового движения молекул. В.И. Вернадский подчеркивал, что жизнь не укладывается в рамки энтропии», антиэнтропийные процессы в мире живого эквивалентны появлению новых, более организованных и совершенных организмов.
Ученые выделяют такую структуру, как аттракторы – притягивающие множества, образующие собой центры, к которым тяготеют элементы. К примеру, когда скапливается большая толпа народа, отдельный человек, двигающийся в собственном направлении, не в состоянии пройти мимо, не отреагировав на нее. Изгиб его траектории осуществится в сторону образовавшейся массы. В обыденной жизни это часто называют любопытством. В теории самоорганизации подобный процесс получил название «сползание в точку скопления». Аттракторы стягивают и концентрируют вокруг себя стохастические элементы, тем самым структурируя среду и выступая участниками созидания порядка. Согласно выводам отечественного синергетика С.П. Курдюмова странный аттрактор представляет собой область, внутри которой по ограниченному спектру состояний блуждает с определенной вероятностью реальное состояние системы.
Понятие синергетики получило широкое распространение в современных научных дискуссиях и исследованиях последних десятилетий в области философии науки и методологии. Сам термин древнегреческого происхождения означает содействие, соучастие – или содействующий, помогающий. Следы его употребления можно найти еще в исихазме – мистическое течение Византии. Наиболее часто он употребляется в контексте научных исследований в значении – согласованное действие, непрерывное сотрудничество, совместное использование. 1973 год – год выступления Г. Хакена на первой конференции, посвященной проблемам самоорганизации – положил начало новой дисциплине. Этот год считается годом рождения синергетики. Г. Хакен – творец синергетики – обратил внимание на то, что корпоративные явления наблюдаются в самых разнообразных системах: астрофизические явления, фазовые переходы, гидродинамические неустойчивости, образование циклонов в атмосфере, динамика популяций и даже явления моды. В своей классической работе «Синергетика» Г. Хакен отмечал, что во многих дисциплинах, от астрофизики до социологии, мы часто наблюдаем, как кооперация отдельных частей системы приводит к макроскопическим структурам или функциям. Синергетика в ее нынешнем состоянии фокусирует внимание на таких ситуациях, в которых структуры или функции систем переживают драматические изменения на уровне макромасштабов. В частности, синергетику особо интересует вопрос о том, как именно подсистемы или части производят изменения, всецело обусловленные процессами самоорганизации. Парадоксальным казалось то, что при переходе от неупорядоченного состояния к состоянию порядка все эти системы ведут себя схожим образом.
Хакен объяснял, почему он назвал новую дисциплину синергетика следующим образом. Во-первых, в ней «исследуется совместное действие многих подсистем..., в результате которого на макроскопическом уровне возникает структура и соответствующее функционирование»1. Во-вторых, она кооперирует усилия различных научных дисциплин для нахождения общих принципов самоорганизации систем.
В 1982 г. на конференции по синергетике, проходившей в нашей стране, были выделены конкретные приоритеты новой науки. Г. Хакен отмечал, что в связи с кризисом узкоспециализированных областей знания информацию необходимо сжать до небольшого числа законов, концепций или идей, а синергетику можно рассматривать как одну из подобных попыток. По мнению ученого – существуют одни и те же принципы самоорганизации различных по своей природе систем – от электронов до людей, а следовательно, речь должна вестись об общих детерминантах природных и социальных процессов, на нахождение которых и направлена синергетика.
Синергетика, таким образом, оказалась весьма продуктивной научной концепцией. Ее предметом выступили процессы самоорганизации – спонтанного структурогенеза. Синергетика включила в себя новые приоритеты современной картины мира: концепцию нестабильного неравновесного мира, феномен неопределенности и многоальтернативности развития, идею возникновения порядка из хаоса.
- Содержание
- Предисловие
- Раздел I. Введение Глава 1 предмет, содержание и задачи учебного курса «концепции современного естествознания»
- Наука в системе мировоззрения и современного миропонимания
- Наука в системе культуры
- Концепции естествознания как фактор создания и изменения содержания научной картины мира
- Темы для докладов и рефератов
- Глава 2 естествознание в культуре современной цивилизации Понятие цивилизации, основные типы цивилизаций и их особенности
- Наука, культура, цивилизация
- Ценности цивилизации и ценности научной рациональности
- Естествознание как социокультурный феномен
- Естественнонаучное познание и философия
- Социальные функции естествознания
- Темы докладов и рефератов
- Глава 3 математика и естествознание. Основные концепции математики
- Темы докладов и рефератов
- Глава 4 химия и естествознание «Химический взгляд» на природу: истоки и современное состояние
- Основные структурные уровни химии и ее разделы
- Основные принципы и законы химии
- Химическая связь и химическая кинетика
- Темы докладов и рефератов
- Раздел II. Структура, методы и методология естествознания
- Глава 5
- Структура естественнонаучного познания, его уровни и методы
- Возможные классификации научного знания
- Исходный пункт структурирования научного знания
- Содержание понятия «чувственные данные»
- Особенности языка науки
- Особенности эмпирического и теоретического языка науки
- Способы конструирования идеального объекта. Отличие идеализированного объекта теории от абстрактного эмпирического объекта
- Предметность и объективность научного знания
- «Инструментализм» и «эссенциализм»
- Методы эмпирического познания
- Измерение как метод эмпирического познания
- Особенности процедуры измерения в социально-гуманитарном познании
- Научный эксперимент
- Специфика научных фактов
- Проблема теоретической «нагруженности» фактов. Крайности теоретизма и фактуализма
- Структура научного факта
- Методы обработки и систематизации фактуального эмпирического знания
- Познавательные функции мысленного эксперимента
- Содержание процедуры формализации
- Гипотетико-дедуктивный метод: достоинства и недостатки
- Методы теоретического воспроизведения исторически развивающегося объекта
- Проблемы логики и методологии науки
- Общенаучные методологические принципы
- Здравый смысл как социокультурное основание науки
- Научная картина мира
- «Научная картина мира» и основные исторические этапы развития науки
- Темы докладов и рефератов:
- Глава 6 научное объяснение, понимание и интерпретация явлений природы Объяснение как универсальная познавательная процедура
- Сильное и слабое объяснение
- Объяснение и понимание: различие и взаимосвязь
- Логическая структура понимания
- Понимание явлений природы
- Содержание понятия «герменевтический круг» и естествознание
- Процедура интерпретации
- Темы докладов и рефератов
- Глава 7 научная рациональность: особенности, способы существования и выражения Научная рациональность: специфика и типы
- Соотношение понятий «рациональное», «иррациональное», «внерациональное»
- Соотношение рационального и иррационального
- Рациональное, иррациональное: гносеологические истоки
- Соотношение рационального и иррационального (внерационального) в человеческой жизнедеятельности
- Темы докладов и рефератов
- Глава 8 рефлексия – форма развития самосознания науки Понятие и структура рефлексии
- Взаимосвязь философской и научной рефлексии
- Рефлексия и развитие форм самосознания науки
- Рефлексия и научная картина мира
- Функции рефлексии как формы развития самосознания науки
- Темы докладов и рефератов
- Раздел III. История и логика развития естествознания Глава 9 динамика развития естествознания. Зависимость изменчивости оснований науки от исторической практики
- Развитие естествознания как социального института и специфического вида человеческой деятельности
- Внутренняя логика развития естествознания
- Новое в науке и критерии научной новизны
- Темы докладов и рефератов:
- Глава 10 механистическая картина природы Понятие «научная картина мира». Становление и основные особенности первой научной картины мира
- Картины мира в истории человечества: мифологическая, религиозная, натурфилософская
- Исторические формы научной картины мира
- Механистическая картина мира
- Темы докладов и рефератов
- Глава 11 предпосылки неклассического естествознания; революция в естествознании конца XIX – начала хх вв. Предпосылки неклассического естествознания
- Революция в естествознании конца XIX – начала хх вв.
- Темы докладов и рефератов
- Глава 12 переход к постнеклассической картине мира
- Темы докладов и рефератов
- Глава 13 естествознание и научно-технический прогресс
- Техника как опредмеченное знание и наука
- Научно-технический прогресс
- Технологические перевороты в истории общества и их современная форма
- Технологические перевороты и логика развития общества
- Темы докладов и рефератов
- Раздел IV современные научные представления о материальных основах природы
- Глава 14
- Структурные уровни материи и типы материальных систем
- Представления о микро-, макро- и мегамирах
- Многообразие материальных систем
- Темы докладов и рефератов
- Глава 15 космологическая и космогоническая концепции Космология и космогония: понятие и общая характеристика
- Космологические модели Вселенной
- Формирование классической космологической модели
- Космологические парадоксы
- Релятивистская модель Вселенной
- Модель расширяющейся Вселенной
- Происхождение Вселенной – концепция Большого взрыва
- «Начало» Вселенной
- Ранний этап эволюции Вселенной
- Структурная самоорганизация Вселенной
- Рождение и эволюция галактик
- Рождение и эволюция звезд
- Дальнейшее усложнение вещества во Вселенной
- Состав Солнечной системы
- Образование Солнечной системы
- Темы рефератов и докладов
- Глава 16 космические исследования и научное познание Человек и космос: познание, освоение, гуманизация
- Геокосмический характер взаимодействия общества и природы
- Космизация современной науки
- Жизнь и разум во Вселенной. Проблема seti
- Темы докладов и рефератов:
- Роль принципа энтропии
- Симметрия и асимметрия
- Темы докладов и рефератов
- Глава 18 всеобщие законы природы и принципы естествознания Природа как сущность и уровни ее организации
- Частные и всеобщие законы Природы
- Физические «всеобщие» законы
- Изменчивость самой Природы
- О познаваемости окружающего мира
- Истина: феномен или ноумен?
- Принципы естествознания
- Принцип аналогии
- Принцип динамического равновесия
- Принципы симметрии
- Темы докладов и рефератов
- Раздел V. Жизнь и человек
- Глава 19
- Учение о жизни
- Современная биология и становление ее рациональности
- Становление рациональной биологии
- Сущность жизни и свойства живых организмов
- Основные концепции происхождения жизни
- Эволюционное учение. Дарвинизм
- Генетика и синтетическая теория эволюции. Коэволюция
- Темы докладов и рефератов
- Глава 20 место человека в природе к вопросу об эволюции и истоках человека
- Гениальное животное
- Периодичность в становлении человека как вида
- Культурные эпохи в истории становления человека, тыс. Лет
- Где прародина человечества?
- Периодичность истории развития человека. Ускорение эволюции культуры
- Генетические аспекты человека
- Ускоренная эволюция человека. Миф или реальность?
- Закономерно ли появление жизни и разума в развитии материи?
- Зигзаги развития
- Темы докладов и рефератов
- Глава 21 эволюция homo sapiens Происхождение человека
- Причины и движущие силы антропосоциогенеза
- Предшественники человека
- Древнейшие люди (архантропы)
- Древние люди (палеоантропы)
- Современные люди (неоантропы)
- Проблема эволюции человека на современном этапе
- Биологическое и социальное в сущности и существовании человека
- Темы докладов и рефератов
- Раздел VI. Наука в современном мире
- Глава 22
- Особенности современного развития естествознания
- Неклассический этап в развитии естествознания
- Постнеклассический этап в развитии естествознания
- Постмодернизм
- Концепция развития научного знания к. Поппера
- Концепция развития науки т. Куна
- Концепция развития науки и. Лакатоса
- Концепция развития науки п. Фейерабенда
- Темы докладов и рефератов
- Глава 23 личность ученого
- Темы докладов и рефератов
- Раздел VII. Приложение учебно-методический комплекс «концепции современного естествознания» программа курса «концепции современного естествознания»
- Предмет, социальные функции и задачи курса «Концепции современного естествознания»
- Тема 2 Структура, методы и методология естествознания. Особенности развития естествознания и его место в культуре, тенденции развития
- Тема 3 История и логика развития естествознания. Созерцательно-натуралистическая модель природы. Предпосылки становления науки и научной модели природы
- Тема 4. Современные естественнонаучные представления о материальных основах природы
- Тема 5. Учение о жизни
- Тема 6. Учение о человеке
- Тема 7. Современное развитие науки; проблемы развития современной российской науки
- Учебно-тематический план курса «Концепции современного естествознания»
- Учебники и учебные пособия
- Планы семинарских занятий Семинар 1. Особенности развития естествознания и его место в культуре
- Семинар 2. Структура естественнонаучного познания, его уровни и научный метод
- Семинар 3. Динамика науки как процесс порождения нового знания
- Семинар 4. Созерцательно-материалистическая модель природы; предпосылки становления науки и научной модели природы
- Семинар 5. Механистическая картина природы
- Семинар 6. Предпосылки неклассического естествознания. Революция в естествознании конца XIX – начала XX вв.
- Семинар 7. Неклассическая картина природы
- Семинар 8. Научные традиции и научные революции. Типы научной рациональности
- Тема 7. Структурные уровни, способы и формы бытия материального мира
- Тема 10. Космологические и космогонические концепции описания материального мира
- Тема 11. Порядок и беспорядок в природе, хаос, симметрия и асимметрия, эволюция материального мира
- Тема 12. Всеобщие законы природы и принципы естествознания
- Тема 13. Учение о жизни
- Тема 14. Учение о человеке (собеседование)
- Тема 15. Роль науки в реализации социально-экономического прогресса современного общества
- Тема 16. Современное развитие науки; проблемы развития современной российской науки
- Вопросы к экзаменам
- Тесты (для самостоятельной проработки) по курсу «Концепции современного естествознания»
- Словарь основных терминов
- Крупнейшие исследователи естествознания
- Сведения об авторах
- Авторский коллектив
- Концепции современного естествознания Учебное пособие
- 344002 Ростов н/д., ул. Пушкинская, 70
- 344000 Ростов н/д., ул. Красноармейская, 157. Тел. /факс: (863) 264-38-77