2.2.3. Электромеханическое скольжение
Ранее мы выяснили, как передается электрическое возбуждение с нервного волокна на мышцу. Теперь, после того как подробно разобрали работу сократительного аппарата мышцы, объединим эти процессы, добавив необходимые звенья. Итак, появление потенциала действия на окончаниях аксона вызывает освобождение медиатора — ацетилхолина. В концевой пластинке мышечной мембраны это приводит к открытию ионных каналов, через которые течет ток, деполяризующий мембрану в области синапса. Далее локальные ветви тока вызывают генерацию по закону «все или ничего» потенциала действия в поверхностной мембране мышечного волокна. Потенциал действия распространяется в обе стороны от концевой пластинки, захватывая всю мембрану мышечного волокна. Мышечное сокращение, вызванное генерацией потенциала действия, также происходит по закону «все или ничего».
81
Вместе с тем более детальные опыты по изучению влияния деполяризации на усилие, развиваемое мышцей во время сокращения, показали, что оно градуально (постепенно) изменяется в зависимости от амплитуды деполяризации (рис. 2.26). Деполяризацию мышечной мембраны вызывали, повышая во внешней среде концентрацию ионов калия с одновременным уменьшением на такую же величину ионов натрия. Возможность вызвать деполяризацию мышечной мембраны таким образом мы обсуждали в разделе при выводе уравнения Нернста. В этих условиях генерация потенциала действия, т. е. неконтролируемого изменения мембранного потенциала, исключалась. Оказалось, что в ответ на воздей-
6 — 3389
!
ствия растворов с повышенной концентрацией ионов калия мышечные волокна реагируют кратковременным сокращением. Во время деполяризации усилия мышцы начинают расти при мембранном потенциале —60 мВ (механический порог) (см. рис. 2.26). Отметим, что потенциал покоя мышечного волокна составляет —90 мВ. Дальнейшая деполяризация ведет к увеличению мышечного усилия, достигающего своего максимального значения при мембранном потенциале около —25 мВ. Интересно сравнить эти данные с изменением мембранного потенциала мышечного волокна при генерации потенциала действия. Известно, что во время генерации потенциала действия мембранный потенциал изменяется от уровня —90 мВ (потенциал покоя) до +50 мВ (максимальная амплитуда потенциала действия); общая амплитуда потенциала действия 140 мВ. Таким образом, потенциал действия превышает на 75 мВ [50 мВ — (—25 мВ)] величину деполяризации, необходимую для развития максимального усилия. На основании этих данных можно сделать важный вывод, что укорочение (сокращение) мышцы по своей природе является градуальным процессом, но в силу того что генерация потенциала действия мышечного волокна происходит по закону «все или ничего», то и сокращение мышечного волокна подчиняется этому закону. Мембранный потенциал в нормальных условиях во время генерации потенциала действия всегда превышает уровень деполяризации, обеспечивающий максимальное сокращение мышечного волокна.
Необходимым условием для передвижения актиновой нити вдоль миозиновой является наличие ионов кальция. Действительно, генерация потенциала действия сопровождается увеличением концентрации ионов кальция во внутриклеточном пространстве мышечного волокна. Это очень наглядно демонстрируют опыты с белком светящихся медуз — экворином, реагирующим на повышение концентрации ионов кальция свечением. Если экворин ввести внутрь мышечного волокна, то во время сокращения регистрируется вспышка свечения. Возникает вопрос: откуда могут поступать ионы кальция в цитоплазму (миоплазму) мышечного волокна? Одним из возможных путей может быть поступление ионов
82
кальция из внешней среды через наружную мембрану к миофиб-риллам во время генерации потенциала действия, поскольку имеются данные, что во время возникновения потенциала концевой пластинки и потенциала действия в небольшой степени увеличивается проницаемость мембраны для ионов кальция. Однако расчеты показали, что скорость диффузии ионов или молекул от поверхности мембраны к центру мышечного волокна радиусом 25...50 мкм в несколько десятков раз ниже той скорости, которая должна быть, судя по разнице во времени (2 мс) между появлением потенциала действия и активацией мышечных фибрилл. Однако основной источник ионов кальция находится внутри мышечного волокна, рядом с миофибриллами. Таким внутриклеточным депо оказался саркоплазматический ретикулум. В связи с этим возникает вопрос о механизмах освобождения ионов кальция из сар-коплазматического ретикулума во время генерации потенциала действия и сокращения мышечного волокна.
Строение и размеры поперечнополосатых мышечных волокон исключают выход ионов кальция из каких-либо внутриклеточных структур, и в том числе из саркоплазматического ретикулума, непосредственно под действием потенциала действия. Прямое физическое воздействие разности потенциалов через поверхностную мембрану способно распространяться максимально на доли миллимикрона в глубь мышечного волокна. Тем не менее потенциал действия все же проникает в глубь мышечного волокна и вызывает освобождение ионов кальция из саркоплазматического ретикулума благодаря системе Г-трубочек. Оказалось, что Г-трубочки способны возбуждаться потенциалом действия, возникающим в поверхностной мембране мышечного волокна, и генерировать свой потенциал действия, который распространяется внутрь мышечного волокна. Ранее говорилось (см. рис. 2.23), что Г-трубочки сжаты концевыми цистернами саркоплазматического ретикулума. При деполяризации мембраны Г-трубочек, находящихся в области концевых цистерн саркоплазматического ретикулума, сигнал доставляется к его мембране с помощью посредника, который освобождается из мембраны Г-трубочек. Этот химический посредник (инозитол-1, 4, 5-трифосфат) вызывает открытие кальциевых каналов в мембране саркоплазматического ретикулума и освобождение запасенных там ионов кальция. Концентрация свободных ионов кальция в миоплазме увеличивается в 10 раз. Кальций, соединяясь с тропонином, вызывает в молекуле этого белка конформационные изменения, в результате чего устраняются препятствия для присоединения поперечных мостиков к актиновым филаментам и перемещения нити актина на один шаг. Затем происходит ферментативное разрушение посредника и кальциевые каналы закрываются. Далее с помощью активного транспорта (Са2+-насоса) вышедшие из саркоплазматического ретикулума ионы кальция возвращаются на прежнее место. Энергия для работы Са2+-насоса обеспечивается распадом АТФ.
г>*
Решающая роль Г-трубочек в процессе сопряжения активации саркомеров с деполяризацией поверхностной мембраны была продемонстрирована в опытах с отрывом Г-трубочек от поверхностной мембраны при осмотическом шоке, который создавался введением 50%-ного глицерина. Как только трубочки отделялись от поверхности мембраны, сократительная реакция мышцы исчезала. При этом потенциал действия в Г-трубочках также исчезал, в то время как потенциал действия в наружной мембране мышечного волокна полностью сохранялся.
- Москва «КолосС» 2004
- Глава 1 регуляция физиологических функций
- 1.1. Понятие о гомеостазе
- 1.2. Гуморальные и нервные механизмы регуляции функций
- 1.3. Единство нервной и гуморальной регуляции
- 1.4. Основные принципы регуляции физиологических функций
- Глава 2 физиология возбудимых тканей
- 2.1. Физиология процессов возбуждения в нервной системе
- 2.1.1. Структурные особенности нервных клеток и волокон
- 2.1.2. Электрические явления в возбудимых тканях
- 3 А Рис. 2.3. Опыты Гальвани (а) и Маттеучи (б), доказывающие наличие электрических потенциалов в нервно-мышечном препарате:
- 2.1.2.1. Ультраструктурная организация клеточной мембраны
- 2 Рис. 2.4. Схема регистрации мембранного потенциала (а) и фрагмент клеточной мембраны (б) нервной клетки:
- 2.1.2.2. Потенциал покоя
- 2.1.2.3. Роль активного транспорта ионов в формировании мембранного потенциала
- 2.1.2.4. Механизмы генерации потенциала действия
- 2.1.2.5. Ионные каналы
- 2.1.2.6. Свойства потенциала действия
- 2.1.2.7. Распространение возбуждения
- 2.1.2.8. Передача нервного возбуждения между клетками. Представление о синапсах
- 2.2. Физиологические свойства мыщц
- 2.2.1 .Структурные основы сокращения мышц. Поперечнополосатые мышцы
- 2.2.2. Теория скольжения нитей
- 2.2.3. Электромеханическое скольжение
- 2.2.4. Механика мышцы
- 2.2.5. Метаболические группы поперечнополосатых мышц. Гладкие мышцы
- Глава 3 физиология системы крови
- 3.1. Значение и функции крови
- 3.2. Количество крови в организме
- 3.3. Состав крови
- 3.4. Физико-химические свойства крови
- 3.5. Гемостаз и свертывание крови
- 3.1. Плазменные факторы свертывания крови
- 3.6. Форменные элементы крови
- 3.7. Регуляция кроветворения
- 3.8. Группы крови
- 3.2. Распределение агглютиногенов и агглютининов в крови системы аво
- Глава 4 физиология иммунной системы
- 4.1. Структура иммунной системы
- 4.1.1. Центральные органы иммунной системы
- 4.1.2. Периферические органы иммунной системы
- 4.1.3. Клетки иммунной системы
- 4.2. Индукция и регуляция иммунного ответа
- 4.2.1. Антигены
- 4.2.2. Активация лимфоцитов
- 4.2.3. Иммунный ответ гуморального типа
- 4.2.4. Антитела
- 4.2.5. Иммунный ответ клеточного типа
- 4.3. Факторы естественной резистентности
- 4.3.1. Естественные барьеры
- 4.3.2. Система фагоцитов
- III стадия n стадия
- 4.3.3. Система комплемента, пропердин
- 4.3.4. Лизоцим
- 4.3.5. Интерфероны
- 4.3.6. Взаимодействие антиген—антитело
- Глава 5 физиология пищеварения
- 5.1. Сущность процесса пищеварения
- 5.2. Физиологические основы голода и насыщения
- 5.3. Методы исследования деятельности пищеварительного тракта
- 5.4. Пищеварение в ротовой полости
- 5.5. Пищеварение в желудке
- 5.1. Функциональное значение секреторных клеток желудка
- Желудочка по Гейденгайну (а) и и. П. Павлову (б):
- 5.6. Особенности желудочного пищеварения у некоторых видов животных
- 5.7. Пищеварение в тонком кишечнике
- 5.8. Пищеварение в толстом кишечнике
- 5.9. Всасывание
- Ние. 5.15. Схематическое изображение функционирования сократительной системы апикальной части эпителиальных клеток тонкой кишки
- 5.2. Гормоны желудочно-кишечного тракта
- 5.11. Пищеварение у птиц
- Глава 6 физиология кровообращения
- 6.1. Физиология сердца
- 6.2. Свойства сердечной мышцы
- 6.3. Сердечный цикл и клапанный аппарат сердца
- 6.1. Частота сокращений сердца в 1 мин
- 6.4. Физические явления, связанные с работой сердца
- 6.2. Систолический и минутный объемы крови у животных
- 6.5. Регуляция работы сердца
- 6.6. Движение крови по кровеносным сосудам
- 6.3. Величина артериального давления у животных, мм рт. Ст.
- 6.7. Регуляция движения крови по сосудам
- 6.8. Особенности кровообращения при различных состояниях организма
- Глава 7 физиология дыхания
- 7.1. Внешнее дыхание
- 7.3. Изменение давления в грудной полости при дыхании:
- 7.1. Частота дыхательных движений в 1 мин
- 7.2. Газообмен в легких
- 7.3. Транспорт газов кровью, газообмен в тканях
- 7.4. Регуляция дыхания
- Сосудистых
- 7.5. Особенности дыхания у птиц
- Глава 8 физиология выделительных процессов
- 8.1. Выделительная функция почек
- 8.2. Структурная организация почек
- 8.3. Мочеобразование
- 8.1. Концентрирующая способность почки
- 8.4. Гомеостатическая функция почек
- 8.2. Факторы, влияющие на клубочковую фильтрацию
- 8.3. Факторы, регулирующие канальцевую реабсорбцию
- 8.5. Регуляция процессов образования мочи
- 8.6. Состав и свойства конечной мочи
- 8.4. Объем мочи, выделяемой за сутки
- 8.7. Механизмы выведения мочи
- 8.8. Выделительная функция кожи
- Глава 9 физиология размножения
- 9.1. Половое созревание и половая зрелость
- 9.1. Половая и физиологическая зрелость самки
- 9.2. Физиология репродуктивной системы самцов
- 9.2. Средние количественные показатели спермы
- 9.3. Физиология репродуктивной системы самок
- 9.3. Особенности половых циклов
- 9.4. Оплодотворение
- 9.5. Беременность
- 9.6. Различные типы плацент у млекопитающих:
- 9.6. Роды
- 9.4. Продолжительность родов
- 9.7. Послеродовой период
- 9.8. Трансплантация зародышей у животных
- 9.9. Особенности размножения птиц
- Глава 10 физиология лактации
- 10.1. Развитие молочной железы
- 10.1. Химический состав секретов молочной железы, %
- 10.2. Тип плацентации и пассивная передача иммунитета (X -о — отсутствие передачи)
- 10.4. Пассивный перенос материнских антител
- 10.3. Передача пассивного иммунитета
- 10.2. Биосинтез основных компонентов молока
- 10.3. Физико-химические показатели молока
- 10.4. Структурная организация секреторного процесса
- 10.5. Регуляция секреции молока
- 10.6. Выведение молока
- 10.7. Физиологические основы машинного доения
- Глава 11 физиология обмена веществ и энергии
- 11.1. Терморегуляция
- 11.1. Ректальная температура у различных видов животных
- 11.2. Белковый (азотистый) обмен
- 11.2.1. Основные этапы белкового обмена
- 11.2.2. Регуляция белкового обмена
- 11.3. Углеводный обмен
- 11.3.1. Основные этапы углеводного обмена
- 11.3.2. Регуляция углеводного обмена
- 11.4. Липидный обмен
- 11.4.1. Основные этапы липидного обмена
- 11.4.2. Регуляция липидного обмена
- 11.5. Обмен воды
- 11.2. Концентрация электролитов в жидкостях организма, мэкв/л
- 11.6. Минеральный обмен
- 11.6.1. Физиологическая роль макроэлементов
- 11.6.2. Физиологическая роль микроэлементов
- 11.6.3. Регуляция минерального обмена
- 11.7. Витамины
- 11.7.1. Жирорастворимые витамины
- 11.7.2. Водорастворимые витамины
- 12.1. Механизмы взаимодействия гормона с клетками
- 12.2. Общие механизмы регуляции внутренней секреции
- 12.1. Нейрогормоны гипоталамо-гипофизарной системы
- 12.3. Гипофиз
- 12.4. Щитовидная железа
- 12.5. Надпочечники
- 12.6. Поджелудочная железа. Внутренняя секреция
- 12.7. Эндокринная функция половых желез
- 12.8. Тимус
- 12.9. Эпифиз
- 12.10. Тканевые гормоны
- 12.11. Гормоны и продуктивность животных
- Глава 13
- 13.1. Нейроны и синапсы
- 13.2. Рефлекторная деятельность
- 13.3. Свойства нервных центров
- 13.4. Координация рефлекторных процессов
- 13.5. Частная физиология
- 13.5.1. Спинной мозг
- Ного мозга по Рекседу. Цифрами обозначены слои нерв пых клеток
- 13.5.2. Продолговатый мозг и варолиев мост
- 13.5.3. Средний мозг
- 13.5.4. Ретикулярная формация
- 13.5.5. Мозжечок
- 13.5.6. Промежуточный мозг
- 13.5.7. Подкорковые ядра
- 13.6. Физиология вегетативной нервной системы
- 13.1. Строение и функции симпатической и парасимпатической нервных систем
- Глава 14
- 14.1. Понятие о нервизме
- 14.2. Методы исследования функций коры больших полушарий
- 14.3. Характеристика условных рефлексов и механизм их образования
- Слуховая
- 14.4. Торможение условных рефлексов
- 14.5. Взаимоотношения возбуждения и торможения в коре больших полушарий
- 14.6. Типы высшей нервной деятельности
- 14.7. Сон и гипноз
- 14.8. Две сигнальные системы действительности
- 14.9. Теория функциональных систем
- Глава 15 физиология анализаторов
- 15.1. Рецепторные клетки — начальное звено анализатора
- 15.2. Двигательный анализатор
- 15.2.1. Мышечное веретено
- 15.2.2. Сухожильный рецептор гольджи
- 15.2.3. Рефлекс на растяжение мышцы
- 15.3. Кожный анализатор
- 15.3.1. Механорецепторы кожи
- 15.3.2. Терморецепторы кожи
- 15.3.3. Болевые рецепторы кожи
- 15.4. Обонятельный анализатор
- Рецептора:
- 15.5. Вкусовой анализатор
- 15.6. Слуховой анализатор
- Активности:
- 15.7. Анализатор положения тела в пространстве
- 15.8. Зрительный анализатор
- 15.8.1. Структура и функция сетчатки
- 15.8.2. Цветовое зрение
- 15.8.3. Переработка зрительных сигналов в сетчатке
- 15.8.4. Защитный аппарат глаза
- 15.9. Анализаторы внутренней среды opi лии 1мл
- 15.9.1. Висцеральные механорецепторы
- 15.9.2. Висцеральные терморецепторы
- 15.9.3. Висцеральные хеморецепторы
- 15.9.4. Болевые висцеральные рецепторы
- Глава 16 этология
- 16.1. Формы поведения
- 16.2. Поведенческие реакции
- 16.3. Факторы, влияющие на поведение
- Оглавление
- Глава 1. Регуляция физиологических функций (т. А. Эйсымонт) 17
- Глава 2. Физиология возбудимых тканей (к п. Алексеев) 27
- Глава 7. Физиология дыхания (т. А. Эйсымонт) 291
- Глава 9. Физиология размножения (и. О. Боголюбова) 351
- Глава 10. Физиология лактации (в. Г. Скопичев) 392
- Глава 12. Физиология эндокринной системы (в. Г. Скопичев) 483
- Глава 13. Физиология центральной нервной системы (а. И. Енукашвили) 544
- Глава 15. Физиология анализаторов (н.П.Алексеев) 628
- Глава 16. Этология (т.А. Эйсымонт).., 697
- 214000, Г. Смоленск, проспект им. Ю. Гагарина, 2.