3.6. Форменные элементы крови
К форменным элементам, или клеткам, крови относятся три класса: эритроциты, лейкоциты и тромбоциты.
Эритроциты. Морфология эритроцитов. Зрелые эритроциты у рептилий, амфибий, рыб и птиц имеют ядра. Эритроциты млекопитающих — безъядерные: ядра исчезают на ранней стадии развития в костном мозге. Эритроциты могут быть в форме двояковогнутого диска, круглые или овальные (овальные у лам и верблюдов) (рис. 3.2.) Каждый эритроцит желтовато-зеленого цвета, но в толстом слое эритроцитарная масса красного цвета (лат. erythros — красный). Красный цвет крови обусловлен наличием в эритроцитах гемоглобина.
Образуются эритроциты в красном костном мозге. Средняя продолжительность их существования составляет около 120 сут;
разрушаются они в селезенке и в печени, лишь небольшая их часть подвергается фагоцитозу в сосудистом русле.
Эритроциты, находящиеся в кровяном русле, неоднородны. Они различаются по возрасту, форме, размеру, устойчивости к неблагоприятным воздействиям. В периферической крови одновременно находятся молодые, зрелые и старые эритроциты. Молодые эритроциты в цитоплазме имеют включения — остатки ядерной субстанции и называются ретикулоцитами. В норме ретикулоциты составляют не более 1 % от всех эритроцитов, повышенное их содержание указывает на усиление эритропоэза.
Рис. 3.2. Форма эритроцитов:
А — двояковогнутый диск (норма); Б — сморщенный в гипертоническом солевом растворе
Двояковогнутая форма эритроцитов обеспечивает большую площадь поверхности, поэтому общая поверхность эритроцитов в Ц5—2 тысячи раз превышает поверхность тела животного. Часть эритроцитов имеет шарообразную форму с выступами (шипи-ками), такие эритроциты называются эхиноцитами. Некоторые эритроциты — куполообразной формы — стомациты.
Диаметр эритроцитов у разных видов животных различен. Очень крупные эритроциты у лягушек (до 23мкм) и у кур (12мкм). Среди млекопитающих самые маленькие эритроциты — 4 мкм — имеют овцы и козы, а самые большие — свиньи и лошади (6...8 мкм). У животных одного вида в основном размеры эритроцитов одинаковы, и только небольшая часть имеет колебания в пределах 0,5... 1,5 мкм.
Мембрана эритроцитов, как и у всех клеток, состоит из двух молекулярных липидных слоев, в которые встроены белковые молекулы. Одни молекулы образуют ионные каналы для транспорта веществ, а другие являются рецепторами (например, хо-линорецепторы) или имеют антигенные свойства (например, агглютиногены). В мембране эритроцитов высокий уровень хо-линэстеразы, что предохраняет их от плазменного (внесинапти-ческого) ацетилхолина.
Через полупроницаемую мембрану эритроцитов хорошо проходят кислород и углекислый газ, вода, ионы хлора, бикарбонаты. Ионы калия и натрия проникают через мембрану медленно, а для ионов кальция, белковых и липидных молекул мембрана непроницаема. Ионный состав эритроцитов отличается от состава плазмы крови: внутри эритроцитов поддерживается более высокая концентрация калия и меньшая натрия, чем в плазме крови. Градиент концентрации указанных ионов сохраняется за счет работы натрий-калиевого насоса.
Гемоглобин — дыхательный пигмент, составляет до 95 % сухого остатка эритроцитов. В цитоплазме эритроцитов имеются нити актина и миозина, формирующие цитоскелет и ряд ферментов.
Оболочка эритроцитов эластична, поэтому они способны проходить через мелкие капилляры, диаметр которых в некоторых органах меньше диаметра эритроцитов.
При повреждении оболочки из эритроцитов в плазму крови выходит гемоглобин и другие компоненты цитоплазмы. Такое явление называется гемолизом. У здоровых животных в плазме разрушается очень небольшое количество старых эритроцитов, это — физиологический гемолиз. Причины более значительного гемолиза как in vivo, так и in vitro могут быть различными.
Осмотический гемолиз наступает при снижении осмотического давления плазмы крови. В таком случае вода проникает внутрь эритроцитов, эритроциты увеличиваются в размерах и разрываются. Устойчивость эритроцитов к гипотоническим растворам называется осмотической резистентностью. Ее можно определить, по-
114
8*
115
мещая эритроциты, отмытые от плазмы крови, в растворы хлорида натрия разной концентрации — от 0,9 до 0,1 %. Обычно гемолиз начинается при концентрации хлорида натрия 0,5...0,7 %; полностью все эритроциты разрушаются при концентрации 0,3...0,4 %. Границы концентрации, при которых начинается и заканчивается гемолиз, называют шириной резистентности эритроцитов. Следовательно, не все эритроциты обладают одинаковой устойчивостью к гипотоническим растворам.
Осмотическая резистентность эритроцитов зависит от проницаемости их мембраны для воды, что связано с ее строением и возрастом эритроцитов. Повышение устойчивости эритроцитов, когда они вьщерживают более низкую концентрацию соли, указывает на «старение» крови и задержку эритропоэза, а понижение резистентности — на «омоложение» крови, усиление кроветворения.
Механический гемолиз возможен при взятии крови (в пробирке): при насасывании из вены через узкие иглы, при грубом встряхивании и перемешивании. При заборе крови из вены струя крови из иглы должна стекать по стенке пробирки, а не ударяться о дно.
Термический гемолиз происходит при резком изменении температуры крови: например, при взятии крови у животного в зимнее время в холодную пробирку, при замораживании. При замораживании вода в клетках крови превращается в лед и кристаллы льда, увеличиваясь в объеме, разрушают оболочку. Термический гемолиз наступает также при нагревании крови выше 50...55 °С вследствие коагуляции белков в мембранах.
Химический гемолиз обычно наблюдается вне организма, при попадании в кровь кислот, щелочей, органических растворителей — спиртов, эфира, бензола, ацетона и др.
Биологический, или токсический, гемолиз может произойти прижизненно, при попадании в кровь различных гемолитических ядов (например, при змеиных укусах, при некоторых отравлениях). Биологический гемолиз возникает при переливании несовместимой группы крови.
Гемоглобин и его формы. Гемоглобин представляет собой соединение четырех молекул гема (небелковая пигментная группа) с глобином (простетическая группа). Гем содержит двухвалентное железо. Гем у животных всех видов одинакового состава, а глобины отличаются своим аминокислотным составом. Кристаллы гемоглобина имеют видовые особенности, что используется для идентификации крови или ее следов в судебной ветеринарии и медицине.
Гемоглобин связывает кислород и диоксид углерода и легко их отщепляет, благодаря чему осуществляет дыхательную функцию. Синтез гемоглобина происходит в красном костном мозге эри-тробластами и в течение существования эритроцитов не обменивается. При разрушении старых эритроцитов гемоглобин превра-
щается в желчные пигменты — билирубин и биливердин. В печени эти пигменты переходят в состав желчи и удаляются из организма через кишечник. Основная часть железа из разрушенного гема снова расходуется на синтез гемоглобина, а меньшая часть удаляется из организма, поэтому организму постоянно необходимо поступление железа с пищей.
Различают несколько форм гемоглобина (НЬ). Примитивный и фетальный гемоглобин — соответственно у зародыша и плода. Эти формы гемоглобина насыщаются при меньшем содержании кислорода в крови, чем у взрослых животных. В течение первого года жизни у сельскохозяйственных животных фетальный гемоглобин (HbF) замещается полностью на гемоглобин, свойственный взрослым, — НЬА.
Оксигемоглобин (НЬ02) — соединение гемоглобина с кислородом. Восстановленный, или редуцированный, — это гемоглобин, отдавший кислород.
Карбогемоглобин (НЬС02) — гемоглобин, присоединивший диоксид углерода. НЬ02 и НЬС02 — соединения непрочные, они легко отдают присоединившиеся молекулы газов.
Карбоксигемоглобин (НЬСО) — соединение гемоглобина с угарным газом (СО). Гемоглобин значительно быстрее соединяется с угарным газом, чем с кислородом. Даже небольшая примесь угарного газа в воздухе — всего 0,1 % — блокирует около 80 % гемоглобина, т. е. он уже не может присоединить кислород и выполнить свою дыхательную функцию. НЬСО нестоек, и если пострадавшему вовремя обеспечить доступ свежего воздуха, то гемоглобин быстро освобождается от угарного газа.
Миоглобш — тоже соединение кислорода с гемоглобином, но это вещество находится не в крови, а в мышцах. Миоглобин участвует в обеспечении кислородом мышц в условиях недостаточности его в крови (например, у ныряющих животных).
Во всех перечисленных формах гемоглобина валентность железа не меняется. Если же под воздействием каких-либо сильных окислителей железо в геме становится трехвалентным, то такая форма гемоглобина называется метгемоглобин. Метгемоглобин не может присоединять кислород. В физиологических условиях концентрация метгемоглобина в крови небольшая — всего 1...2% от всего гемоглобина, причем он находится в основном в старых эритроцитах. Считают, что причиной физиологической метгемо-глобинемии является окисление железа в геме за счет активных ионизированных молекул кислорода, поступающих в эритроцит, хотя в эритроцитах имеется фермент, поддерживающий двухвалентную форму железа.
Предполагают, что в физиологических условиях метгемоглобин обезвреживает ядовитые вещества — токсины, образующиеся в организме в процессе обмена веществ или поступающие извне: цианиды, фенол, сернистый водород, янтарная и масляная кислоты и др.
116
117
Если же значительная часть гемоглобина крови перейдет в метгемо-глобин, то возникнет кислородная недостаточность тканей. Такое состояние может быть при отравлении нитратами и нитритами.
Количество гемоглобина в крови является важным клиническим показателем дыхательной функции крови. Оно измеряется в граммах на литр крови (г/л). У лошади уровень гемоглобина в среднем 90...150 г/л, у крупного рогатого скота — 100...130, у свиней - 100...120 г/л.
Другой важный показатель — это количество эритроцитов в крови. В среднем у крупного рогатого скота в 1 л крови содержится (5...7) • 1012 эритроцитов. Коэффициент 1012 называется «тера», и общий вид записи следующий: 5...7 Т/л (читается: тера на литр). У свиней в крови содержится 5...8 Т/л эритроцитов, у коз до 14 Т/л. У коз большое количество эритроцитов обусловлено тем, что они очень маленького размера, поэтому объем всех эритроцитов у коз такой же, как у других животных.
Содержание эритроцитов в крови у лошадей зависит от их породы и хозяйственного использования: у лошадей шаговых пород — 6...8 Т/л, у рысистых — 8...10, а у верховых — до 11 Т/л. Чем больше потребность организма в кислороде и питательных веществах, тем больше эритроцитов содержится в крови. У высокопродуктивных молочных коров уровень эритроцитов соответствует верхней границе нормы, у низкомолочных — нижней.
У новорожденных животных количество эритроцитов в крови всегда больше, чем у взрослых. Так, у телят 1 ...6-месячного возраста содержание эритроцитов доходит до 8... 10 Т/л и стабилизируется на уровне, свойственном взрослым животным, к 5...6 годам. У самцов в крови содержится больше эритроцитов, чем у самок.
Функции эритроцитов:
-
Перенос кислорода от легких к тканям и диоксида углерода от тканей к легким.
-
Поддержание рН крови (гемоглобин и оксигемоглобин составляют одну из буферных систем крови).
-
Поддержание ионного гомеостаза за счет обмена ионами между плазмой и эритроцитами.
-
Участие в водном и солевом обмене.
-
Адсорбция токсинов, в том числе продуктов распада белка, что уменьшает их концентрацию в плазме крови и препятствует переходу в ткани.
-
Участие в ферментативных процессах, в транспорте питательных веществ — глюкозы, аминокислот.
Уровень содержания эритроцитов в крови изменяется. Уменьшение количества эритроцитов ниже нормы (эозинопения) у взрослых животных обычно наблюдается только при заболеваниях, а повышение сверх нормы возможно и при заболеваниях, и у здоровых животных. Увеличение содержания эритроцитов в крови у здоровых животных называется физиологическим эритроцито-
зом. Различают три формы физиологических эритроцитозов: перераспределительный, истинный и относительный.
Перераспределительный эритроцитов возникает быстро и является механизмом срочной мобилизации эритроцитов при внезапной нагрузке — физической или эмоциональной. При нагрузке возникает кислородное голодание тканей, в крови накапливаются не-доокисленные продукты обмена. Раздражаются хеморецепторы сосудов, возбуждение передается в ЦНС. Ответная реакция осуществляется при участии симпатической нервной системы. Происходит выброс крови из кровяных депо и синусов костного мозга. Таким образом, механизмы перераспределительного эритроцитоза направлены на перераспределение имеющегося запаса эритроцитов между депо и циркулирующей кровью. После прекращения нагрузки содержание эритроцитов в крови восстанавливается.
Истинный эритроцитоз характеризуется увеличением активности костномозгового кроветворения. Для развития истинного эритроцитоза требуется более длительное время, а регуляторные процессы оказываются более сложными. Индуцируется длительной кислородной недостаточностью тканей с образованием в почках низкомолекулярного белка — эритропоэтина, который и активизирует эритропоэз. Истинный эритроцитоз обычно развивается при систематических мышечных тренировках, длительном содержании животных в условиях пониженного атмосферного давления. К этому же типу относится эритроцитоз у новорожденных животных.
Рассмотрим на конкретном примере, как смена условий содержания животных приводит к развитию у них физиологического эритроцитоза. В южных районах России практикуют отгонное животноводство. Летом скот начинают перегонять на высокогорные пастбища, где не жарко, хороший травостой, нет кровососущих насекомых. Вначале, когда скот поднимается по дорогам вверх, в горы, для обеспечения увеличенной потребности в кислороде происходит перераспределение эритроцитов между кровяными депо и циркулирующей кровью (перераспределительный эритроцитоз). По мере поднятия в горы к физической нагрузке добавляется еще один мощный фактор воздействия — разрежение воздуха, т. е. понижение атмосферного давления и содержания кислорода в воздухе. Постепенно, в течение нескольких дней костный мозг перестраивается на новый, более интенсивный уровень кроветворения, и перераспределительный эритроцитоз сменяется истинным. Истинный эритроцитоз сохраняется в течение длительного времени после возвращения животных осенью в равнинные места, что повышает резистентность организма к неблагоприятным природно-климатическим условиям.
Относительный эритроцитоз не связан ни с перераспределением крови, ни с выработкой новых эритроцитов. Относительный эритроцитоз наблюдается при обезвоживании животного, вследствие чего возрастает гематокрит, т. е. содержание эритроцитов в
118
119
единице объема крови увеличивается, а плазмы — уменьшается. После обильного поения или введения в кровь физиологического раствора гематокритная величина восстанавливается.
Реакция оседания эритроцитов. Если взять кровь у животного, добавить в нее антикоагулянт и дать отстояться, то через некоторое время можно наблюдать оседание эритроцитов, а в верхней части сосуда будет находиться слой плазмы крови.
Скорость оседания эритроцитов (СОЭ) учитывают по отстоявшемуся столбику плазмы в миллиметрах за час или 24 ч. По методу Панченкова СОЭ определяют в капиллярных трубках, закрепленных в штативе вертикально. У животных СОЭ видоспецифична: быстрее всего оседают эритроциты у лошади (40...70 мм/ч), медленнее всего — у жвачных (0,5...1,5 мм/ч и 10...20 мм/24 ч); у свиней — в среднем 6... 10 мм/ч, а у птиц 2...4 мм/ч.
Основная причина оседания эритроцитов заключается в их склеивании, или агглютинации. Поскольку плотность эритроцитов больше, чем плазмы крови, то образовавшиеся комочки из склеившихся эритроцитов оседают. Эритроциты, находящиеся в кровяном русле и движущиеся с током крови, имеют одинаковые электрические заряды и отталкиваются друг от друга. В крови, находящейся вне организма («в стекле»), эритроциты теряют свои заряды и начинают образовывать так называемые монетные столбики. Такие агрегаты становятся более тяжелыми и оседают.
Эритроциты лошади в отличие от других видов животных имеют на мембранах агглютиногены, которые, вероятно, и вызывают ускоренную агглютинацию, поэтому все эритроциты у лошади оседают в первый час реакции.
Что влияет на скорость оседания эритроцитов?
-
Количество эритроцитов в крови и их заряд. Чем больше эритроцитов в крови, тем медленнее они оседают. Напротив, при всех случаях анемии (уменьшения содержания эритроцитов) СОЭ возрастает.
-
Вязкость крови. Чем больше вязкость крови, тем медленнее оседают эритроциты.
-
Реакция крови. При ацидозах СОЭ уменьшается. Это явление может быть хорошим тестом для выбора оптимального режима тренировки для спортивной лошади. Если после нагрузки СОЭ значительно снижается, то это может быть связано с накоплением в крови недоокисленных продуктов (метаболический ацидоз). Следовательно, такой лошади надо уменьшить нагрузку.
-
Белковый спектр плазмы крови. При увеличении в крови глобулинов и фибриногена СОЭ ускоряется. Причиной ускорения оседания эритроцитов является адсорбция упомянутых белков на поверхности эритроцитов, нейтрализация их зарядов и утяжеление клеток. Поэтому СОЭ увеличивается при беременности (перед родами), а также при инфекционных болезнях и воспалительных процессах.
СОЭ является важным клиническим показателем состояния животного. При заболеваниях СОЭ может замедляться, ускоряться или оставаться в пределах нормы, что важно в дифференциальной диагностике. Однако надо иметь в виду, что и у здоровых животных возможны колебания СОЭ, поэтому следует оценивать совокупность и лабораторных, и клинических показателей.
Лейкоциты. Количество лейкоцитов. У здоровых лошадей, крупного и мелкого рогатого скота в крови содержится 6... 10 Г/л лейкоцитов (Г = 109; читают: гига на литр); у свиней лейкоцитов больше —8...16, а у птиц — 20...40 Г/л. Уменьшение количества лейкоцитов в крови называется лейкопенией. В последние десятилетия наметилась тенденция к снижению числа лейкоцитов в крови у здоровых животных и людей до 4 Г/л. Считают, что небольшая лейкопения связана с нарушениями экологии и не всегда является патологией.
Увеличение количества лейкоцитов называется лейкоцитозом. Лейкоцитозы подразделяют на физиологические, патологические и медикаментозные. У здоровых животных лейкоцитоз может быть в следующих случаях.
-
Лейкоцитоз беременных — в последнюю стадию беременности.
-
Лейкоцитоз новорожденных.
-
Алиментарный лейкоцитоз, то есть связанный с приемом корма. Обычно бывает у животных с однокамерным желудком через 2...4 ч после кормления, во время интенсивного всасывания веществ из кишечника.
-
Миогенный лейкоцитоз. Возникает у лошадей после напряженной физической нагрузки. Чем тяжелее и изнурительнее была работа, тем выше лейкоцитоз; в крови появляются перерожденные, дегенеративные клетки. Так, у лошадей после очень интенсивной нагрузки отмечали до 50 Г/л лейкоцитов, что в 5... 10 раз больше нормы.
-
Эмоциональный лейкоцитоз. Проявляется при сильных эмоциональных перегрузках, при болевых раздражениях. Например, лейкоцитоз у студентов при сдаче трудного экзамена.
-
Условно-рефлекторный лейкоцитоз. Вырабатывается, если индифферентный раздражитель неоднократно сочетать с безусловным, вызывающим лейкоцитоз. Например, если одновременно с нанесением болевого раздражения включать звонок, то после нескольких опытов уже один звонок вызывает лейкоцитоз.
По механизму развития физиологические лейкоцитозы могут быть двух типов: перераспределительные и истинные. Как и эри-троцитозы, перераспределительные лейкоцитозы являются временными за счет перехода лейкоцитов из кровяных депо или пассивного вымывания из кроветворных органов. Истинные лейкоцитозы возникают при более интенсивном кроветворении, они развиваются медленно, но сохраняются в течение длительного времени. Относительных лейкоцитозов, по аналогии с относительным эри-
120
121
троцитозом, не бывает, так как общее количество лейкоцитов в крови намного меньше, чем эритроцитов. Поэтому при сгущении крови увеличение гематокрита происходит за счет эритроцитов, а не лейкоцитов.
Функции лейкоцитов. В крови присутствуют две группы лейкоцитов: зернистые, или гранулоциты (содержат в цитоплазме зернистость, видимую при фиксации и окраске мазка), и незернистые, или агранулоциты (зернистость в цитоплазме отсутствует). К зернистым лейкоцитам относятся базофилы, эозинофилы и нейтрофилы. Незернистые лейкоциты — лимфоциты и моноциты.
Все гранулоциты образуются в красном костном мозге. Их количество в синусах костного мозга больше, чем в крови, примерно в 20 раз, они и являются резервом для перераспределительного лейкоцитоза. При полной остановке развития лейкоцитов костный мозг способен в течение 6 сут поддерживать нормальный уровень их в крови.
Лейкоциты задерживаются в костном мозге в зрелом состоянии до 3 сут, после чего попадают в кровоток. Однако через несколько дней гранулоциты навсегда покидают сосудистое русло и мигрируют в ткани, где продолжают осуществлять свои функции и впоследствии разрушаются. Они удаляются из организма и другим путем, слущиваясь со слизистых оболочек верхних дыхательных путей, желудочно-кишечного тракта и мочеполовых путей. Продолжительность жизни гранулоцитов — от нескольких часов до 4...6 сут.
Базофилы. Базофилы синтезируют в гранулах и выделяют в кровь гистамин и гепарин. Гепарин является основным антикоагулянтом, он препятствует свертыванию крови в сосудах. Гистамин — антагонист гепарина. Кроме того, гистамин выполняет ряд других функций: он стимулирует фагоцитоз, увеличивает проницаемость кровеносных сосудов, расширяет артериолы, капилляры и венулы. Базофилы синтезируют также и другие БАВ — хе-мотоксические факторы, привлекающие эозинофилы и нейтрофилы, простагландины, некоторые факторы свертывания крови. В крови содержание базофилов очень незначительное — до 1 % по отношению ко всем лейкоцитам.
Близкими по своим морфологическим и физиологическим свойствам являются тучные клетки. Они находятся не в крови, хотя в небольшом количестве могут в ней присутствовать, а в соединительнотканных пространствах. Большей частью они встречаются вокруг кровеносных сосудов, главным образом в коже, по всему дыхательному и пищеварительному тракту, то есть в местах контакта внутренней среды организма с внешней. Уже само расположение тучных клеток наводит на мысль о том, что они участвуют в защитных реакциях организма от вредоносных факторов внешней среды. Скопление тучных клеток обнаруживается также там, где появился чужеродный белок.
Происхождение тучных клеток пока не выяснено. Вероятно, они образуются в костном мозге и могут мигрировать из крови в соединительнотканные пространства. Установлено, что тучные клетки могут размножаться.
Механизмы дегрануляции базофилов и тучных клеток, очевидно, одинаковы и зависят от функционального состояния этих клеток. В состоянии покоя клеток происходит медленный экзоцитоз (выделение) везикул, содержащих БАВ. При усиленном функционировании, действии на клетку различных агрессивных факторов мелкие гранулы (везикулы) объединяются, образуются «каналы» между гранулой и внеклеточной средой, или же гранулы сливаются с наружной мембраной клетки, последняя разрывается, при этом клетка иногда полностью разрушается. В любом случае на грануляцию базофилов и тучных клеток идет внутриклеточный запас кальция, а для перемещения, или транслокации, гранул используются сократительные микрофиламентные структуры клеток.
Активация базофилов стимулируется иммунным комплексом антиген—иммуноглобулин Е и другими веществами — компонентами системы комплемента, полисахаридами бактерий, антигенами плесневых грибов, аллергенами домашней пыли и др.
Эозинофилы. Эозинофилы обладают антитоксическими свойствами. Они способны адсорбировать токсины на своей поверхности, нейтрализовывать их или транспортировать к органам выделения.
Эозинофилы выделяют различные БАВ, большинство из которых по своим эффектам противоположны веществам, секретируе-мым базофилами и тучными клетками. Эозинофилы содержат ги-стаминазу — фермент, разрушающий гистамин, а также тормозят дальнейшее выделение гистамина базофилами. Эозинофилы способствуют свертыванию крови в отличие от базофилов. Установлено, что они фагоцитируют гранулы, выделяемые тучными клетками, в межклеточных пространствах. Все это позволяет организму снизить интенсивность аллергических реакций, защитить собственные ткани.
Миграцию эозинофилов из крови в ткани стимулируют базофилы и тучные клетки, а также лимфокины, простагландины, фактор активации тромбоцитов и иммуноглобулин Е. В свою очередь, эозинофилы стимулируют дегрануляцию базофилов и тучных клеток.
Уменьшение числа эозинофилов в крови (эозинопения) часто наблюдается при стрессах различной этиологии, оно обусловлено активацией гипофизарно-надпочечниковой системы. Увеличение числа эозинофилов (эозинофилия) отмечается при всех случаях интоксикации и при аллергических реакциях (в сочетании с базофилией).
Нейтрофилы. Нейтрофилы характеризуются высокой способностью к самостоятельному амебовидному передвижению, очень
122
123
быстро переходят из крови в ткани и обратно, мигрируют по межклеточным пространствам. Они обладают хемотаксисом, то есть способностью двигаться в сторону химического или биологического раздражителя. Поэтому при попадании в организм микробных клеток, или продуктов их жизнедеятельности, или каких-то посторонних тел их прежде всего атакуют нейтрофилы. Передвижение нейтрофилов обеспечивают контрактильные (сократительные) белки — актин и миозин, находящиеся в их цитоплазме.
Нейтрофилы содержат ферменты, расщепляющие белки, жиры и углеводы. Благодаря набору активных ферментов нейтрофилы выполняют одну из главнейших функций — фагоцитоз. За открытие фагоцитоза великий русский ученый И. И. Мечников был удостоен Нобелевской премии. Сущность фагоцитоза заключается в том, что нейтрофилы устремляются навстречу чужеродной клетки, прилипают к ней, втягивают вместе с частью мембраны внутрь и подвергают внутриклеточному перевариванию. В процессе фагоцитоза участвуют щелочная и кислая фосфатаза, катепсин, лизо-цим, миелопероксидаза. Нейтрофилы фагоцитируют не только микроорганизмы, но и иммунные комплексы, образовавшиеся при взаимодействии антигена с антителом.
Фагоцитоз — это борьба не только с патогенными микроорганизмами, но и способ освобождения организма от собственных отмерших и мутантных клеток. Путем фагоцитоза происходит перестройка тканей организма, когда уничтожаются ненужные клетки (например, перестройка костных трабекул). Удаление неполноценных эритроцитов, избытка яйцеклеток или спермиев также происходит путем фагоцитоза. Таким образом, фагоцитоз проявляется постоянно в живом организме как способ сохранения гомеостаза и как одна из стадий физиологической регенерации тканей.
Важное значение нейтрофилов заключается также в выработке различных биологически активных веществ (БАВ). Эти вещества повышают проницаемость капилляров, миграцию других клеток крови в ткани, стимулируют кроветворение, рост и регенерацию тканей. Нейтрофилы вырабатывают бактерицидные, антитоксические и пирогенные вещества (пирогены — вещества, повышающие температуру тела, они вызывают лихорадочную реакцию при инфекционных или воспалительных заболеваниях). Нейтрофилы участвуют в свертывании крови и в фибринолизе.
Рассмотрим функции агранулоцитов — лимфоцитов и моноцитов.
Лимфоциты. Лимфоциты образуются в красном костном мозге, но на ранней стадии развития часть их покидает костный мозг и попадает в тимус, а часть — в фабрициеву сумку у птиц или ее аналоги у млекопитающих (предположительно — лимфатические узлы кишечника, миндалины). В этих органах происходит дальнейшее созревание и «обучение» лимфоцитов. Под обучением понимают приобретение мембраной лимфоцитов специфических
рецепторов, чувствительных к антигенам определенных видов микроорганизмов или чужеродных белков.
Таким образом, лимфоциты становятся неоднородными по своим свойствам и функциям. Различают три основные популяции лимфоцитов: Т-лимфоциты (тимусзависимые), созревающие в тимусе, или вилочковой железе; В-лимфоциты (бурсазависи-мые), созревающие в фабрициевой сумке у птиц и в лимфоидной ткани у млекопитающих; О-лимфоциты (нулевые), которые могут превращаться и в Т- и В-лимфоциты.
Т-лимфоциты после созревания в тимусе расселяются в лимфоузлах, селезенке или циркулируют в крови. Они обеспечивают клеточные реакции иммунитета. Т-лимфоциты неоднородны, среди них имеется несколько субпопуляций:
Т-хелперы (англ. help — помогать) — взаимодействуют с В-лим-фоцитами, превращают их в плазматические клетки, вырабатывающие антитела;
Т-супрессоры (англ. supress — подавлять) — понижают активность В-лимфоцитов, препятствуют их чрезмерной реакции;
Т-киллеры (англ. kill — убивать) — клетки-убийцы; разрушают чужеродные клетки, трансплантаты, опухолевые клетки, мутант-ные клетки и, таким образом, благодаря цитотоксическим механизмам сохраняют генетический гомеостаз.
Клетки иммунной памяти — хранят в памяти встреченные в течение жизни организма антигены, т. е. имеют на мембране рецепторы к ним. Согласно данным, эти клетки долгоживущие; у крыс, например, они сохраняются в течение всей их жизни.
Основная функция В-лимфоцитов — выработка антител, т. е. защитных иммуноглобулинов. Иммуноглобулины находятся на поверхности клеточных мембран В-лимфоцитов и выполняют роль рецепторов, связывающих антигены. Известно, что и Т-лимфоциты также имеют на своей поверхности иммуноглобулины.
Моноциты. Моноциты обладают высокой фагоцитарной активностью. Часть их мигрирует из крови в ткани и превращается в тканевые макрофаги. Они очищают кровяное русло, разрушают живые и погибшие микроорганизмы, уничтожают обломки тканей и отмершие клетки организма. Цитотоксическое действие моноцитов обусловлено наличием ферментов — миелопероксидазы и др.
Существенную роль играют моноциты в организации иммунного ответа. Моноциты, взаимодействуя своими рецепторами с антигеном, образуют комплекс (моноцит + антиген), в котором антиген распознается Т-лимфоцитами. Таким образом, значение моноцитов в иммунных реакциях заключается и в фагоцитозе, и в презентации, или в представлении антигена Т-лимфоцитам.
Моноциты участвуют в регенерации тканей, а также в регуляции гемопоэза, стимулируя образование эритропоэтинов и простаглан-динов.'Моноциты секретируют до 100 БАВ, в том числе интерлей-кины-1, пирогены и вещества, активирующие фибробласты, и др.
124
125
Лейкоцитарная формула, или лейкограмма. Лейкоцитарная формула — это содержание в крови отдельных классов лейкоцитов. Лейкоцитарная формула крови показывает количество базофилов, эозинофилов, нейтрофилов, лимфоцитов и моноцитов в процентах, т. е. на 100 клеток всех лейкоцитов. Зная процент каждого вида лейкоцитов и их общее содержание в крови, можно вычислить количество отдельных классов лейкоцитов в 1 л крови.
Лейкограмма может быть двух типов: нейтрофильная и лим-фоцитарная. Нейтрофильная формула, или нейтрофильный характер крови, характерна для лошадей, собак и многих других видов животных с однокамерным желудком: содержание нейтрофилов от 50 до 70 %. У жвачных животных в крови преобладают лимфоциты (от 50 до 70 %), и такой тип лейкограммы называется лимфоцитарным. У свиней примерно равное количество нейтрофилов и лимфоцитов, их лейкограмма имеет переходный тип.
В содержании других классов лейкоцитов видовые особенности несущественны: базофилов — 0...1 %, эозинофилов — 1...4 (у жвачных — до 6 %), моноцитов — 1...6 %.
При анализе лейкоцитарной формулы следует учитывать возраст животных. Так, у телят первых месяцев жизни, когда преджелудки еще недостаточно функционируют, лейкограмма имеет нейтрофильный характер. Увеличение числа нейтрофилов сверх нормы возможно у лошадей после изнурительной работы.
При заболеваниях соотношение между лейкоцитами может изменяться, при этом увеличение процента одного класса лейкоцитов сопровождается уменьшением других. Так, при нейт-рофилии обычно наблюдается лимфопения, а при лимфоцито-зе — нейтропения и эозинофилия; возможны и другие варианты. Поэтому для постановки диагноза необходимо учитывать и общее число лейкоцитов в крови, и лейкоцитарную формулу, а гематологические показатели сопоставить с клиническими проявлениями заболевания.
Тромбоциты, или кровяные пластинки, образуются из мега-кариоцитов костного мозга в результате отшнуровки частиц цитоплазмы.
Число тромбоцитов в крови животных может колебаться в больших пределах — от 200 до 600 Г/л: у новорожденных их больше, чем у взрослых; днем их содержится больше, чем ночью. Значительный тромбоцитоз, т. е. увеличенное содержание тромбоцитов в крови, отмечается при мышечной нагрузке, после приема корма и при голодании. Продолжительность жизни тромбоцитов от 4 до 9 сут.
Свойства и функции тромбоцитов. Тромбоциты участвуют во всех реакциях гемостаза. Прежде всего с их
непосредственным участием формируется тромбоцитарный, или микроциркуляционный, тромб. В тромбоцитах находится белок — тромбостенин, способный сокращаться подобно актомиозину мышечных клеток. При сокращении тромбостенина тромбоцит вместо дисковидной формы принимает сферическую, покрывается «щетиной» выростов — псевдоподий, что увеличивает контактную поверхность клеток и способствует их взаимодействию между собой. Происходит агрегация тромбоцитов, т. е. скопление их большого числа. Такие агрегаты можно увидеть в мазке, если кровь предварительно простояла какое-то время в пробирке. Если же мазок сделан из свежевыпущенной капли крови (при проколе кровеносного сосуда), то тромбоциты располагаются по отдельности между другими клетками крови. Агрегация тромбоцитов — процесс обратимый, при расслаблении тромбостенина тромбоциты снова приобретают дисковидную форму.
Тромбоциты обладают адгезивностыо (клейкостью). Они способны распластываться и приклеиваться к чужеродной поверхности, друг к другу, к сосудистой стенке. Адгезия — необратимый процесс, склеившиеся тромбоциты разрушаются. Адгезивность тромбоцитов повышается при беременности, травмах, хирургических вмешательствах; организм как бы заранее начинает готовиться к борьбе с возможными кровотечениями.
Из разрушенных склеившихся тромбоцитов выделяются тром-боцитарные факторы свертывания крови, участвующие в образовании протромбиназы и ретракции кровяного сгустка, а также вызывающие сокращение кровеносного сосуда.
Функции тромбоцитов не ограничиваются только гемостазом. Ежедневно около 15 % тромбоцитов прилипают к эндо-телиоцитам и изливают в них свое содержимое, за это их называют «кормильцами» эндотелия сосудов. Очевидно, эндо-телиальные клетки не могут в достаточном количестве извлекать необходимые им вещества из плазмы крови. Если лишить их тромбоцитарной «подкормки», то они быстро подвергаются дистрофии, становятся ломкими и начинают пропускать макромолекулы и даже эритроциты.
Тромбоциты содержат в своем составе железо, медь, дыхательные ферменты и могут наряду с эритроцитами транспортировать в крови кислород. Это приобретает значение в тех случаях, когда организм находится в состоянии значительной гипоксии — при максимальной физической нагрузке, низком содержании кислорода в воздухе. Есть данные, что тромбоциты способны к фагоцитозу. Они синтезируют так называемый тромбоцитарный фактор роста, ускоряющий регенеративные процессы в тканях. Однако основная функция тромбоцитов — предотвращение или остановка кровотечения, а все остальные — резервные, дополняющие роль эритроцитов или лейкоцитов.
126
127
- Москва «КолосС» 2004
- Глава 1 регуляция физиологических функций
- 1.1. Понятие о гомеостазе
- 1.2. Гуморальные и нервные механизмы регуляции функций
- 1.3. Единство нервной и гуморальной регуляции
- 1.4. Основные принципы регуляции физиологических функций
- Глава 2 физиология возбудимых тканей
- 2.1. Физиология процессов возбуждения в нервной системе
- 2.1.1. Структурные особенности нервных клеток и волокон
- 2.1.2. Электрические явления в возбудимых тканях
- 3 А Рис. 2.3. Опыты Гальвани (а) и Маттеучи (б), доказывающие наличие электрических потенциалов в нервно-мышечном препарате:
- 2.1.2.1. Ультраструктурная организация клеточной мембраны
- 2 Рис. 2.4. Схема регистрации мембранного потенциала (а) и фрагмент клеточной мембраны (б) нервной клетки:
- 2.1.2.2. Потенциал покоя
- 2.1.2.3. Роль активного транспорта ионов в формировании мембранного потенциала
- 2.1.2.4. Механизмы генерации потенциала действия
- 2.1.2.5. Ионные каналы
- 2.1.2.6. Свойства потенциала действия
- 2.1.2.7. Распространение возбуждения
- 2.1.2.8. Передача нервного возбуждения между клетками. Представление о синапсах
- 2.2. Физиологические свойства мыщц
- 2.2.1 .Структурные основы сокращения мышц. Поперечнополосатые мышцы
- 2.2.2. Теория скольжения нитей
- 2.2.3. Электромеханическое скольжение
- 2.2.4. Механика мышцы
- 2.2.5. Метаболические группы поперечнополосатых мышц. Гладкие мышцы
- Глава 3 физиология системы крови
- 3.1. Значение и функции крови
- 3.2. Количество крови в организме
- 3.3. Состав крови
- 3.4. Физико-химические свойства крови
- 3.5. Гемостаз и свертывание крови
- 3.1. Плазменные факторы свертывания крови
- 3.6. Форменные элементы крови
- 3.7. Регуляция кроветворения
- 3.8. Группы крови
- 3.2. Распределение агглютиногенов и агглютининов в крови системы аво
- Глава 4 физиология иммунной системы
- 4.1. Структура иммунной системы
- 4.1.1. Центральные органы иммунной системы
- 4.1.2. Периферические органы иммунной системы
- 4.1.3. Клетки иммунной системы
- 4.2. Индукция и регуляция иммунного ответа
- 4.2.1. Антигены
- 4.2.2. Активация лимфоцитов
- 4.2.3. Иммунный ответ гуморального типа
- 4.2.4. Антитела
- 4.2.5. Иммунный ответ клеточного типа
- 4.3. Факторы естественной резистентности
- 4.3.1. Естественные барьеры
- 4.3.2. Система фагоцитов
- III стадия n стадия
- 4.3.3. Система комплемента, пропердин
- 4.3.4. Лизоцим
- 4.3.5. Интерфероны
- 4.3.6. Взаимодействие антиген—антитело
- Глава 5 физиология пищеварения
- 5.1. Сущность процесса пищеварения
- 5.2. Физиологические основы голода и насыщения
- 5.3. Методы исследования деятельности пищеварительного тракта
- 5.4. Пищеварение в ротовой полости
- 5.5. Пищеварение в желудке
- 5.1. Функциональное значение секреторных клеток желудка
- Желудочка по Гейденгайну (а) и и. П. Павлову (б):
- 5.6. Особенности желудочного пищеварения у некоторых видов животных
- 5.7. Пищеварение в тонком кишечнике
- 5.8. Пищеварение в толстом кишечнике
- 5.9. Всасывание
- Ние. 5.15. Схематическое изображение функционирования сократительной системы апикальной части эпителиальных клеток тонкой кишки
- 5.2. Гормоны желудочно-кишечного тракта
- 5.11. Пищеварение у птиц
- Глава 6 физиология кровообращения
- 6.1. Физиология сердца
- 6.2. Свойства сердечной мышцы
- 6.3. Сердечный цикл и клапанный аппарат сердца
- 6.1. Частота сокращений сердца в 1 мин
- 6.4. Физические явления, связанные с работой сердца
- 6.2. Систолический и минутный объемы крови у животных
- 6.5. Регуляция работы сердца
- 6.6. Движение крови по кровеносным сосудам
- 6.3. Величина артериального давления у животных, мм рт. Ст.
- 6.7. Регуляция движения крови по сосудам
- 6.8. Особенности кровообращения при различных состояниях организма
- Глава 7 физиология дыхания
- 7.1. Внешнее дыхание
- 7.3. Изменение давления в грудной полости при дыхании:
- 7.1. Частота дыхательных движений в 1 мин
- 7.2. Газообмен в легких
- 7.3. Транспорт газов кровью, газообмен в тканях
- 7.4. Регуляция дыхания
- Сосудистых
- 7.5. Особенности дыхания у птиц
- Глава 8 физиология выделительных процессов
- 8.1. Выделительная функция почек
- 8.2. Структурная организация почек
- 8.3. Мочеобразование
- 8.1. Концентрирующая способность почки
- 8.4. Гомеостатическая функция почек
- 8.2. Факторы, влияющие на клубочковую фильтрацию
- 8.3. Факторы, регулирующие канальцевую реабсорбцию
- 8.5. Регуляция процессов образования мочи
- 8.6. Состав и свойства конечной мочи
- 8.4. Объем мочи, выделяемой за сутки
- 8.7. Механизмы выведения мочи
- 8.8. Выделительная функция кожи
- Глава 9 физиология размножения
- 9.1. Половое созревание и половая зрелость
- 9.1. Половая и физиологическая зрелость самки
- 9.2. Физиология репродуктивной системы самцов
- 9.2. Средние количественные показатели спермы
- 9.3. Физиология репродуктивной системы самок
- 9.3. Особенности половых циклов
- 9.4. Оплодотворение
- 9.5. Беременность
- 9.6. Различные типы плацент у млекопитающих:
- 9.6. Роды
- 9.4. Продолжительность родов
- 9.7. Послеродовой период
- 9.8. Трансплантация зародышей у животных
- 9.9. Особенности размножения птиц
- Глава 10 физиология лактации
- 10.1. Развитие молочной железы
- 10.1. Химический состав секретов молочной железы, %
- 10.2. Тип плацентации и пассивная передача иммунитета (X -о — отсутствие передачи)
- 10.4. Пассивный перенос материнских антител
- 10.3. Передача пассивного иммунитета
- 10.2. Биосинтез основных компонентов молока
- 10.3. Физико-химические показатели молока
- 10.4. Структурная организация секреторного процесса
- 10.5. Регуляция секреции молока
- 10.6. Выведение молока
- 10.7. Физиологические основы машинного доения
- Глава 11 физиология обмена веществ и энергии
- 11.1. Терморегуляция
- 11.1. Ректальная температура у различных видов животных
- 11.2. Белковый (азотистый) обмен
- 11.2.1. Основные этапы белкового обмена
- 11.2.2. Регуляция белкового обмена
- 11.3. Углеводный обмен
- 11.3.1. Основные этапы углеводного обмена
- 11.3.2. Регуляция углеводного обмена
- 11.4. Липидный обмен
- 11.4.1. Основные этапы липидного обмена
- 11.4.2. Регуляция липидного обмена
- 11.5. Обмен воды
- 11.2. Концентрация электролитов в жидкостях организма, мэкв/л
- 11.6. Минеральный обмен
- 11.6.1. Физиологическая роль макроэлементов
- 11.6.2. Физиологическая роль микроэлементов
- 11.6.3. Регуляция минерального обмена
- 11.7. Витамины
- 11.7.1. Жирорастворимые витамины
- 11.7.2. Водорастворимые витамины
- 12.1. Механизмы взаимодействия гормона с клетками
- 12.2. Общие механизмы регуляции внутренней секреции
- 12.1. Нейрогормоны гипоталамо-гипофизарной системы
- 12.3. Гипофиз
- 12.4. Щитовидная железа
- 12.5. Надпочечники
- 12.6. Поджелудочная железа. Внутренняя секреция
- 12.7. Эндокринная функция половых желез
- 12.8. Тимус
- 12.9. Эпифиз
- 12.10. Тканевые гормоны
- 12.11. Гормоны и продуктивность животных
- Глава 13
- 13.1. Нейроны и синапсы
- 13.2. Рефлекторная деятельность
- 13.3. Свойства нервных центров
- 13.4. Координация рефлекторных процессов
- 13.5. Частная физиология
- 13.5.1. Спинной мозг
- Ного мозга по Рекседу. Цифрами обозначены слои нерв пых клеток
- 13.5.2. Продолговатый мозг и варолиев мост
- 13.5.3. Средний мозг
- 13.5.4. Ретикулярная формация
- 13.5.5. Мозжечок
- 13.5.6. Промежуточный мозг
- 13.5.7. Подкорковые ядра
- 13.6. Физиология вегетативной нервной системы
- 13.1. Строение и функции симпатической и парасимпатической нервных систем
- Глава 14
- 14.1. Понятие о нервизме
- 14.2. Методы исследования функций коры больших полушарий
- 14.3. Характеристика условных рефлексов и механизм их образования
- Слуховая
- 14.4. Торможение условных рефлексов
- 14.5. Взаимоотношения возбуждения и торможения в коре больших полушарий
- 14.6. Типы высшей нервной деятельности
- 14.7. Сон и гипноз
- 14.8. Две сигнальные системы действительности
- 14.9. Теория функциональных систем
- Глава 15 физиология анализаторов
- 15.1. Рецепторные клетки — начальное звено анализатора
- 15.2. Двигательный анализатор
- 15.2.1. Мышечное веретено
- 15.2.2. Сухожильный рецептор гольджи
- 15.2.3. Рефлекс на растяжение мышцы
- 15.3. Кожный анализатор
- 15.3.1. Механорецепторы кожи
- 15.3.2. Терморецепторы кожи
- 15.3.3. Болевые рецепторы кожи
- 15.4. Обонятельный анализатор
- Рецептора:
- 15.5. Вкусовой анализатор
- 15.6. Слуховой анализатор
- Активности:
- 15.7. Анализатор положения тела в пространстве
- 15.8. Зрительный анализатор
- 15.8.1. Структура и функция сетчатки
- 15.8.2. Цветовое зрение
- 15.8.3. Переработка зрительных сигналов в сетчатке
- 15.8.4. Защитный аппарат глаза
- 15.9. Анализаторы внутренней среды opi лии 1мл
- 15.9.1. Висцеральные механорецепторы
- 15.9.2. Висцеральные терморецепторы
- 15.9.3. Висцеральные хеморецепторы
- 15.9.4. Болевые висцеральные рецепторы
- Глава 16 этология
- 16.1. Формы поведения
- 16.2. Поведенческие реакции
- 16.3. Факторы, влияющие на поведение
- Оглавление
- Глава 1. Регуляция физиологических функций (т. А. Эйсымонт) 17
- Глава 2. Физиология возбудимых тканей (к п. Алексеев) 27
- Глава 7. Физиология дыхания (т. А. Эйсымонт) 291
- Глава 9. Физиология размножения (и. О. Боголюбова) 351
- Глава 10. Физиология лактации (в. Г. Скопичев) 392
- Глава 12. Физиология эндокринной системы (в. Г. Скопичев) 483
- Глава 13. Физиология центральной нервной системы (а. И. Енукашвили) 544
- Глава 15. Физиология анализаторов (н.П.Алексеев) 628
- Глава 16. Этология (т.А. Эйсымонт).., 697
- 214000, Г. Смоленск, проспект им. Ю. Гагарина, 2.