7.3. Транспорт газов кровью, газообмен в тканях
Транспорт кислорода кровью. Кислород транспортируется кровью в двух формах — в растворенном виде и в соединении с гемоглобином. В плазме артериальной крови содержится очень небольшое количество физически растворенного кислорода, всего
0,3 об.%, т. е. 0,3 мл кислорода в 100 мл крови. Основная же часть кислорода вступает в непрочное соединение с гемоглобином эритроцитов, образуя оксигемоглобин. Насыщение крови кислородом называется оксигенацией или артериализацией крови. Кровь, оттекающая от легких по легочным венам, имеет такой же газовый состав, что и артериальная кровь в большом круге кровообращения.
Количество кислорода, находящееся в 100 мл крови при условии полного перехода гемоглобина в оксигемоглобин, называется кислородной емкостью крови. Эта величина помимо парциального давления кислорода зависит от содержания гемоглобина в крови. Известно, что 1 г гемоглобина может в среднем связать 1,34 мл кислорода. Следовательно, зная уровень содержания в крови гемоглобина, можно вычислить кислородную емкость крови. Так, у лошадей при содержании гемоглобина в крови около 14 г/100 мл кислородная емкость крови составляет (1,34 • 14) около 19 об.%, у крупного рогатого скота при уровне гемоглобина 10... 12 г/100 мл — около 13...16 об.%. Пересчитав содержание кислорода в общем объеме крови, оказывается, что его запаса хватит лишь на З...4мин при условии, если он не будет поступать из воздуха.
На уровне моря при соответственных колебаниях атмосферного давления и парциального давления кислорода в альвеолярном воздухе гемоглобин практически полностью насыщается кислородом. В условиях высокогорья, где атмосферное давление низкое, снижается парциальное давление кислорода и уменьшается кислородная емкость крови. На содержание кислорода в крови также влияет температура крови: с повышением температуры тела снижается кислородная насыщенность крови. Высокое содержание в крови водородных ионов и диоксида углерода способствует отщеплению кислорода от оксигемогло-бина при прохождении крови через капилляры большого круга кровообращения.
Обмен газов между кровью и тканями совершается так же, как и обмен газов между кровью и альвеолярным воздухом — по законам диффузии и осмоса. Поступающая сюда артериальная кровь насыщена кислородом, его напряжение составляет 100 мм рт. ст. В тканевой жидкости напряжение кислорода составляет 20...37 мм рт. ст., а в клетках, которые потребляют кислород, его уровень падает до 0. Поэтому оксигемоглобин отщепляет кислород, который переходит сначала в тканевую жидкость, а затем в клетки тканей.
В процессе тканевого дыхания из клеток выделяется диоксид углерода. Он сначала растворяется в тканевой жидкости и создает там напряжение около 60...70 мм рт. ст., что выше, чем в крови (40 мм рт. ст.). Градиент напряжения кислорода в тканевой жидкости и крови является причиной диффузии диоксида углерода из тканевой жидкости в кровь.
304
20 — 3389
305
Транспорт диоксида углерода кровью. Диоксид углерода транспортируется в трех формах: в растворенном виде, в соединении с гемоглобином (карбогемоглобин) и в виде бикарбонатов.
Поступающий из тканей диоксид углерода незначительно растворяется в плазме крови —до 2,5об.%; его растворимость немного выше, чем у кислорода. Из плазмы диоксид углерода проникает в эритроциты и вытесняет из оксигемоглобина кислород. Оксигемоглобин превращается в восстановленнный, или редуцированный, гемоглобин. Присутствующий в эритроцитах фермент4 карбоангидраза ускоряет соединение диоксида углерода с водой и образование угольной кислоты — Н2С03. Эта кислота нестойкая, она диссоциирует на Н+ и HCOJ.
Поскольку мембрана эритроцита непроницаема для Н+, он остается в эритроцитах, а НС03 переходит в плазму крови, где превращается в бикарбонат натрия (NaHC03). Часть диоксида углерода в эритроцитах соединяется с гемоглобином, образуя карбогемоглобин, а с катионами калия — бикарбонат калия (КНС03).
В легочных альвеолах, где парциальное давление диоксида углерода ниже, чем в венозной крови, растворенный и освободившийся при диссоциации карбогемоглобина диоксид углерода диффундирует в альвеолярный воздух. Одновременно кислород переходит в кровь и связывается с редуцированным гемоглобином, образуя оксигемоглобин. Оксигемоглобин, являясь более сильной кислотой, чем угольная, вытесняет угольную кислоту из бикарбонатов ионы калия. Угольная кислота расщепляется до С02 и Н20 при участии карбоангидразы. Диоксид углерода переходит из эритроцитов в плазму крови и затем в альвеолярный воздух (см. рис. 7.6).
Несмотря на то что основная часть диоксида углерода присутствует в плазме крови в форме бикарбоната натрия, в альвеолярный воздух выделяется преимущественно диоксид углерода не из плазмы крови, а из эритроцитов. Дело в том, что только в эритроцитах имеется карбоангидраза, расщепляющая угольную кислоту. В плазме крови карбоангидразы нет, поэтому бикарбонаты разрушаются очень медленно и диоксид углерода не успевает выйти в альвеолярный воздух (по легочным капиллярам кровь проходит менее чем за 1 с). Таким образом, диоксид углерода находится в крови в трех формах: растворенной, в виде карбогемоглобина, бикарбонатов, но через легкие удаляется только в одной форме — С02.
Не весь кислород из артериальной крови поступает в ткани, часть его переходит в венозную кровь. Отношение объема кислорода, поглощенного тканями, к содержанию его в артериальной крови называется коэффициентом утилизации кислорода. В условиях физиологического покоя он составляет около 40 %. При более высоком уровне метаболизма коэффициент утилизации кислорода увеличивается и уровень его в венозной крови падает.
Проходя через легкие, не весь диоксид углерода поступает в альвеолярный воздух, часть его остается в крови и переходит в арте-
риальную кровь. Таким образом, если в венозной крови содержится 58 об.% диоксида углерода, то в артериальной крови — 52 об.%. Наличие определенного уровня кислорода и особенно диоксида углерода в артериальной крови имеет огромное значение в процессах регуляции внешнего дыхания.
Тканевое (внутриклеточное) дыхание. Тканевое дыхание — это процесс биологического окисления в клетках и тканях организма.
Биологическое окисление происходит в митохондриях. Внутреннее пространство митохондрий окружено двумя мембранами—наружной и внутренней. На внутренней мембране, имеющей складчатое строение, сосредоточено большое количество ферментов. Поступающий в клетку кислород затрачивается на окисление жиров, углеводов и белков. При этом освобождается энергия в наиболее доступной для клеток форме, прежде всего в форме АТФ — аденозинтрифосфорной кислоты. Ведущее значение в окислительных процессах имеют реакции дегидрирования (отдача водорода).
Синтез АТФ осуществляется при миграции электронов от субстрата к кислороду через цепь дыхательных ферментов (фла-виновые ферменты, цитохромы и др.) Освобождающаяся энергия накапливается в форме макроэргических соединений (например, АТФ), а конечными продуктами реакций становятся вода и диоксид углерода.
Наряду с окислительным фосфорилированием кислород может использоваться в некоторых тканях по типу непосредственного внедрения в окисляемое вещество. Такое окисление называется микросомальным, ибо происходит в микросомах — везикулах, образованных мембранами эндоплазматического ретику-лума клетки.
Ткани и органы имеют разную потребность в кислороде: интенсивнее поглощают кислород из крови головной мозг, особенно кора больших полушарий, печень, сердце, почки. Меньше потребляют кислорода в состоянии покоя клетки крови, скелетные мышцы, селезенка. При нагрузке потребление кислорода возрастает. Например, при тяжелой мышечной работе скелетные мышцы потребляют больше кислорода в 40 раз, сердечная мышца — в 4 раза (в расчете на 1г ткани).
Даже в пределах одного органа потребление кислорода может резко отличаться. Например, в корковой части почек оно интенсивнее, чем в мозговой части, в 20 раз. Это зависит от строения ткани, плотности распределения в ней кровеносных капилляров, регуляции кровотока, коэффициента утилизации кислорода и ряда других факторов. Следует помнить, что чем больше клетки будут потреблять кислорода, тем больше образуется продуктов обмена — диоксида углерода и воды.
306
20*
307
- Москва «КолосС» 2004
- Глава 1 регуляция физиологических функций
- 1.1. Понятие о гомеостазе
- 1.2. Гуморальные и нервные механизмы регуляции функций
- 1.3. Единство нервной и гуморальной регуляции
- 1.4. Основные принципы регуляции физиологических функций
- Глава 2 физиология возбудимых тканей
- 2.1. Физиология процессов возбуждения в нервной системе
- 2.1.1. Структурные особенности нервных клеток и волокон
- 2.1.2. Электрические явления в возбудимых тканях
- 3 А Рис. 2.3. Опыты Гальвани (а) и Маттеучи (б), доказывающие наличие электрических потенциалов в нервно-мышечном препарате:
- 2.1.2.1. Ультраструктурная организация клеточной мембраны
- 2 Рис. 2.4. Схема регистрации мембранного потенциала (а) и фрагмент клеточной мембраны (б) нервной клетки:
- 2.1.2.2. Потенциал покоя
- 2.1.2.3. Роль активного транспорта ионов в формировании мембранного потенциала
- 2.1.2.4. Механизмы генерации потенциала действия
- 2.1.2.5. Ионные каналы
- 2.1.2.6. Свойства потенциала действия
- 2.1.2.7. Распространение возбуждения
- 2.1.2.8. Передача нервного возбуждения между клетками. Представление о синапсах
- 2.2. Физиологические свойства мыщц
- 2.2.1 .Структурные основы сокращения мышц. Поперечнополосатые мышцы
- 2.2.2. Теория скольжения нитей
- 2.2.3. Электромеханическое скольжение
- 2.2.4. Механика мышцы
- 2.2.5. Метаболические группы поперечнополосатых мышц. Гладкие мышцы
- Глава 3 физиология системы крови
- 3.1. Значение и функции крови
- 3.2. Количество крови в организме
- 3.3. Состав крови
- 3.4. Физико-химические свойства крови
- 3.5. Гемостаз и свертывание крови
- 3.1. Плазменные факторы свертывания крови
- 3.6. Форменные элементы крови
- 3.7. Регуляция кроветворения
- 3.8. Группы крови
- 3.2. Распределение агглютиногенов и агглютининов в крови системы аво
- Глава 4 физиология иммунной системы
- 4.1. Структура иммунной системы
- 4.1.1. Центральные органы иммунной системы
- 4.1.2. Периферические органы иммунной системы
- 4.1.3. Клетки иммунной системы
- 4.2. Индукция и регуляция иммунного ответа
- 4.2.1. Антигены
- 4.2.2. Активация лимфоцитов
- 4.2.3. Иммунный ответ гуморального типа
- 4.2.4. Антитела
- 4.2.5. Иммунный ответ клеточного типа
- 4.3. Факторы естественной резистентности
- 4.3.1. Естественные барьеры
- 4.3.2. Система фагоцитов
- III стадия n стадия
- 4.3.3. Система комплемента, пропердин
- 4.3.4. Лизоцим
- 4.3.5. Интерфероны
- 4.3.6. Взаимодействие антиген—антитело
- Глава 5 физиология пищеварения
- 5.1. Сущность процесса пищеварения
- 5.2. Физиологические основы голода и насыщения
- 5.3. Методы исследования деятельности пищеварительного тракта
- 5.4. Пищеварение в ротовой полости
- 5.5. Пищеварение в желудке
- 5.1. Функциональное значение секреторных клеток желудка
- Желудочка по Гейденгайну (а) и и. П. Павлову (б):
- 5.6. Особенности желудочного пищеварения у некоторых видов животных
- 5.7. Пищеварение в тонком кишечнике
- 5.8. Пищеварение в толстом кишечнике
- 5.9. Всасывание
- Ние. 5.15. Схематическое изображение функционирования сократительной системы апикальной части эпителиальных клеток тонкой кишки
- 5.2. Гормоны желудочно-кишечного тракта
- 5.11. Пищеварение у птиц
- Глава 6 физиология кровообращения
- 6.1. Физиология сердца
- 6.2. Свойства сердечной мышцы
- 6.3. Сердечный цикл и клапанный аппарат сердца
- 6.1. Частота сокращений сердца в 1 мин
- 6.4. Физические явления, связанные с работой сердца
- 6.2. Систолический и минутный объемы крови у животных
- 6.5. Регуляция работы сердца
- 6.6. Движение крови по кровеносным сосудам
- 6.3. Величина артериального давления у животных, мм рт. Ст.
- 6.7. Регуляция движения крови по сосудам
- 6.8. Особенности кровообращения при различных состояниях организма
- Глава 7 физиология дыхания
- 7.1. Внешнее дыхание
- 7.3. Изменение давления в грудной полости при дыхании:
- 7.1. Частота дыхательных движений в 1 мин
- 7.2. Газообмен в легких
- 7.3. Транспорт газов кровью, газообмен в тканях
- 7.4. Регуляция дыхания
- Сосудистых
- 7.5. Особенности дыхания у птиц
- Глава 8 физиология выделительных процессов
- 8.1. Выделительная функция почек
- 8.2. Структурная организация почек
- 8.3. Мочеобразование
- 8.1. Концентрирующая способность почки
- 8.4. Гомеостатическая функция почек
- 8.2. Факторы, влияющие на клубочковую фильтрацию
- 8.3. Факторы, регулирующие канальцевую реабсорбцию
- 8.5. Регуляция процессов образования мочи
- 8.6. Состав и свойства конечной мочи
- 8.4. Объем мочи, выделяемой за сутки
- 8.7. Механизмы выведения мочи
- 8.8. Выделительная функция кожи
- Глава 9 физиология размножения
- 9.1. Половое созревание и половая зрелость
- 9.1. Половая и физиологическая зрелость самки
- 9.2. Физиология репродуктивной системы самцов
- 9.2. Средние количественные показатели спермы
- 9.3. Физиология репродуктивной системы самок
- 9.3. Особенности половых циклов
- 9.4. Оплодотворение
- 9.5. Беременность
- 9.6. Различные типы плацент у млекопитающих:
- 9.6. Роды
- 9.4. Продолжительность родов
- 9.7. Послеродовой период
- 9.8. Трансплантация зародышей у животных
- 9.9. Особенности размножения птиц
- Глава 10 физиология лактации
- 10.1. Развитие молочной железы
- 10.1. Химический состав секретов молочной железы, %
- 10.2. Тип плацентации и пассивная передача иммунитета (X -о — отсутствие передачи)
- 10.4. Пассивный перенос материнских антител
- 10.3. Передача пассивного иммунитета
- 10.2. Биосинтез основных компонентов молока
- 10.3. Физико-химические показатели молока
- 10.4. Структурная организация секреторного процесса
- 10.5. Регуляция секреции молока
- 10.6. Выведение молока
- 10.7. Физиологические основы машинного доения
- Глава 11 физиология обмена веществ и энергии
- 11.1. Терморегуляция
- 11.1. Ректальная температура у различных видов животных
- 11.2. Белковый (азотистый) обмен
- 11.2.1. Основные этапы белкового обмена
- 11.2.2. Регуляция белкового обмена
- 11.3. Углеводный обмен
- 11.3.1. Основные этапы углеводного обмена
- 11.3.2. Регуляция углеводного обмена
- 11.4. Липидный обмен
- 11.4.1. Основные этапы липидного обмена
- 11.4.2. Регуляция липидного обмена
- 11.5. Обмен воды
- 11.2. Концентрация электролитов в жидкостях организма, мэкв/л
- 11.6. Минеральный обмен
- 11.6.1. Физиологическая роль макроэлементов
- 11.6.2. Физиологическая роль микроэлементов
- 11.6.3. Регуляция минерального обмена
- 11.7. Витамины
- 11.7.1. Жирорастворимые витамины
- 11.7.2. Водорастворимые витамины
- 12.1. Механизмы взаимодействия гормона с клетками
- 12.2. Общие механизмы регуляции внутренней секреции
- 12.1. Нейрогормоны гипоталамо-гипофизарной системы
- 12.3. Гипофиз
- 12.4. Щитовидная железа
- 12.5. Надпочечники
- 12.6. Поджелудочная железа. Внутренняя секреция
- 12.7. Эндокринная функция половых желез
- 12.8. Тимус
- 12.9. Эпифиз
- 12.10. Тканевые гормоны
- 12.11. Гормоны и продуктивность животных
- Глава 13
- 13.1. Нейроны и синапсы
- 13.2. Рефлекторная деятельность
- 13.3. Свойства нервных центров
- 13.4. Координация рефлекторных процессов
- 13.5. Частная физиология
- 13.5.1. Спинной мозг
- Ного мозга по Рекседу. Цифрами обозначены слои нерв пых клеток
- 13.5.2. Продолговатый мозг и варолиев мост
- 13.5.3. Средний мозг
- 13.5.4. Ретикулярная формация
- 13.5.5. Мозжечок
- 13.5.6. Промежуточный мозг
- 13.5.7. Подкорковые ядра
- 13.6. Физиология вегетативной нервной системы
- 13.1. Строение и функции симпатической и парасимпатической нервных систем
- Глава 14
- 14.1. Понятие о нервизме
- 14.2. Методы исследования функций коры больших полушарий
- 14.3. Характеристика условных рефлексов и механизм их образования
- Слуховая
- 14.4. Торможение условных рефлексов
- 14.5. Взаимоотношения возбуждения и торможения в коре больших полушарий
- 14.6. Типы высшей нервной деятельности
- 14.7. Сон и гипноз
- 14.8. Две сигнальные системы действительности
- 14.9. Теория функциональных систем
- Глава 15 физиология анализаторов
- 15.1. Рецепторные клетки — начальное звено анализатора
- 15.2. Двигательный анализатор
- 15.2.1. Мышечное веретено
- 15.2.2. Сухожильный рецептор гольджи
- 15.2.3. Рефлекс на растяжение мышцы
- 15.3. Кожный анализатор
- 15.3.1. Механорецепторы кожи
- 15.3.2. Терморецепторы кожи
- 15.3.3. Болевые рецепторы кожи
- 15.4. Обонятельный анализатор
- Рецептора:
- 15.5. Вкусовой анализатор
- 15.6. Слуховой анализатор
- Активности:
- 15.7. Анализатор положения тела в пространстве
- 15.8. Зрительный анализатор
- 15.8.1. Структура и функция сетчатки
- 15.8.2. Цветовое зрение
- 15.8.3. Переработка зрительных сигналов в сетчатке
- 15.8.4. Защитный аппарат глаза
- 15.9. Анализаторы внутренней среды opi лии 1мл
- 15.9.1. Висцеральные механорецепторы
- 15.9.2. Висцеральные терморецепторы
- 15.9.3. Висцеральные хеморецепторы
- 15.9.4. Болевые висцеральные рецепторы
- Глава 16 этология
- 16.1. Формы поведения
- 16.2. Поведенческие реакции
- 16.3. Факторы, влияющие на поведение
- Оглавление
- Глава 1. Регуляция физиологических функций (т. А. Эйсымонт) 17
- Глава 2. Физиология возбудимых тканей (к п. Алексеев) 27
- Глава 7. Физиология дыхания (т. А. Эйсымонт) 291
- Глава 9. Физиология размножения (и. О. Боголюбова) 351
- Глава 10. Физиология лактации (в. Г. Скопичев) 392
- Глава 12. Физиология эндокринной системы (в. Г. Скопичев) 483
- Глава 13. Физиология центральной нервной системы (а. И. Енукашвили) 544
- Глава 15. Физиология анализаторов (н.П.Алексеев) 628
- Глава 16. Этология (т.А. Эйсымонт).., 697
- 214000, Г. Смоленск, проспект им. Ю. Гагарина, 2.