11.6.1. Физиологическая роль макроэлементов
Организм животных не может нормально функционировать, если с водой и пищей не поступает необходимое количество макроэлементов. Минеральные вещества обеспечивают процессы роста, размножения, поддержания физиологического равновесия и
454
продуктивности животных, поскольку в определенных сочетаниях участвуют во всех жизненных проявлениях организма: дыхании, работе сердца и мышц, деятельности нервной системы и др.
Натрий и калий обеспечивают создание осмотического давления, транспорт веществ через клеточные мембраны, участвуют в регуляции водно-солевого баланса организма, активности ряда ферментов и генерации биопотенциалов. Наряду с тканевыми жидкостями значительное количество натрия и калия содержится в пищеварительных соках и потовой жидкости. Нормальная жизнедеятельность организма возможна при соотношении Na : К = 1 : 2. Любые отклонения от этого соотношения приводят к нарушению деятельности кишечника, сердца, мышечной и нервной ткани.
Кальций принимает участие в процессах пищеварения и обезвреживания в организме вредных соединений (рис. 11.1), обеспечении процессов свертывания крови и формирования состава молока. Он необходим для нормальной деятельности сердца, функционирования иммунной системы, защищающей организм от инфекций. В организме кальций усваивается одновременно с фосфором (оптимальное соотношение 2 :1) и накапливается в основном в костной ткани, обеспечивая ее механическую прочность. Для поддержания тонуса нервной системы, сосудодвигательных
Потребление 1000 мг/сут
Кость
↕
Са пищеварительных соков
Пул кальция
200 мг
Общее всасывание Са 400мг
ЛПП мя
Моча 200 мг/сут
Кал 800 мг/сут
Рис. 11.1. Обмен кальция с участием желудочно-кишечного тракта, почек и костной ткани
455
реакций и регуляции проницаемости капилляров необходимо постоянное присутствие ионизированного кальция в кровотоке. При недостаточном поступлении кальция с кормом у коров понижается оплодотворяемость, часты аборты; телята нежизнеспособны, с пониженной общей физиологической сопротивляемостью к неблагоприятным факторам среды. Особо чувствительны к кальциевой недостаточности свиньи. Дефицит кальция приводит к нарушению воспроизводства и полной стерильности, а у супоросных свиноматок снижается количество поросят в помете. Свиноматки могут приносить неполноценный приплод (мертворожденных и нежизнеспособных поросят) либо плохо выкармливать поросят или даже проявлять склонность к поеданию приплода. При недостатке кальция в рационе молодняка различных видов животных (телят, поросят, ягнят, цыплят) возникает опасность заболевания рахитом, а при дефиците кальция у взрослых животных развивается остеомаляция.
Кальций относится к наиболее важным химическим элементам, необходимым для обеспечения основных жизненных процессов в организме животных и определяющих продуктивность. Установлено, что у высокопродуктивных коров потери кальция могут в несколько раз превышать потребность организма в этом элементе: при годовом удое 3000 кг с молоком за весь лактационный период выделяется около 22,5 кг кальция, а у коров-рекордисток в сутки теряется более 400 г. Особенно много кальция выводится из организма птиц в репродуктивный период: в расчете на весь период яйценоскости (200 яиц в год) курица теряет более 400 г кальция, что в 13... 15 раз превышает его содержание в теле. В яйце со средней массой 56 г содержится: Са — 1,98 г, Р — 0,12, Mg — 0,03, К и Na - по 0,07, С1 - 0,09, S - 0,11 г.
Фосфор — элемент, необходимый для жизнедеятельности организма: входит в состав опорных тканей, сложных белков и углеводов. Соединения, содержащие фосфор, входят в состав ряда ферментов, активируют ферментативные процессы, участвуют в окислительном фосфорилировании, промежуточном обмене углеводов, сокращениях мускулатуры. Фосфор — активный катализатор и стимулятор обменных процессов в организме: участвует во всасывании, транспортировке и обмене органических питательных веществ, а также в обеспечении пластических функций, делении клеток и процессах роста тканей и органов.
Уровень содержания фосфора в организме животного зависит от количества его в рационе и степени усвояемости. Дефицит его вызывает ухудшение общего состояния, нарушение обмена веществ, извращение аппетита, развитие костных заболеваний (рахита, остеомаляции), снижение продуктивности и плодовитости. Фосфор находится в организме животных в виде неорганических (натриевые, кальциевые, калиевые и магниевые соли фосфорной кислоты) и органоминеральных соединений (фосфорные эфиры ами-
нокислот, фосфатиды, нуклеиновые кислоты, нуклеопротеиды и соединения с непосредственной связью между азотом и фосфором — креатинфосфорная кислота). Для переваривания и усвоения животными питательных веществ необходимо участие фосфора в фосфорилировании продуктов обмена. Кроме того, у жвачных животных для осуществления микробиального синтеза в предже-лудках необходим фосфор для преобразования и использования азотистых веществ корма, что особенно важно при скармливании синтетических азотсодержащих препаратов. В присутствии солей фосфорной кислоты заметно ускоряется всасывание аминокислот из кишечника. Применение минеральных добавок, содержащих фосфаты, повышает использование азота на 5...23 %.
Обмен неорганического фосфора тесно связан с метаболическими реакциями организма. Особенно интенсивно протекают реакции между неорганическим фосфором и макроэргами, в первую очередь аденозинтри- и аденозиндифосфорными кислотами (АТФ и АДФ). Увеличение массы тела животного и другие виды продуктивности зависят от синтеза белка, который возможен лишь при определенных затратах энергии: чем интенсивнее метаболические процессы, тем быстрее протекают реакции фосфорилирова-ния, восстанавливающие израсходованную АТФ.
Основная часть фосфора (83...87 %) в организме животных содержится в костной ткани, состоящей из фосфорно-кальциевых солей. Степень минерализации костей и включение фосфора в обмен костной ткани зависят от многих факторов: общего уровня питания, типа кормления, содержания в рационах белка, фосфора, кальция и витаминной обеспеченности корма. Поступивший в желудочно-кишечный тракт с кормами и минеральными добавками фосфор всасывается в основном в виде неорганических солей. Под действием пищеварительных соков и ферментов нерастворимые соединения расщепляются с образованием аниона фосфора. В жидкостях тела (крови, лимфе или ликворе) фосфор содержится в виде одно- и двухосновных фосфатов щелочных и щелочноземельных металлов. Большая часть поступившего в организм фосфора вначале накапливается в печени, а затем переходит в плазму крови, в мышцы, мозг, костную и другие ткани, где и включается в промежуточный обмен (рис. 11.2).
Обмен фосфора тесно связан с обменом кальция, причем при разработке рационов, сбалансированных по минеральным веществам, следует исходить не столько из соотношения этих элементов в кормах, сколько из потребности в них организма и функционального состояния животных. Так, у телят повышение содержания фосфора в кормах за счет фосфорнокислого натрия предотвращает развитие рахита, несмотря на то, что кальций поступал в небольших количествах. Жвачные животные эволюционно приспособлены к потреблению больших количеств корма (травы, соломы, сена, силоса и сенажа), в котором соотношение кальция и
456
457
Потребление 1200 мг/сут
| Кость | ||||
|
|
| ↕ |
| |
| Фосфор пищеварительных соков 100 мг |
| ' | ||
| _ | Пул фосфатов | |||
| ← | ||||
| Общее всасывание фосфора 900 мг | ||||
|
| ||||
| →
|
| ↓ |
|
Кал 400 мг/сут
Моча 800 мг/сут
фосфора выше рекомендуемого и составляет 2:1. При скармливании отдельных видов корма (клевер, люцерна) существенный положительный эффект достигается при соотношении кальция и фосфора 8:1. Только при повышенном содержании кальция в кормах и соотношении кальция и фосфора 10:1 отмечается отрицательное влияние несбалансированного рациона.
Обмен кальция и фосфора тесно связан с магнием. Между кальцием и магнием существует определенный антагонизм, хотя они присутствуют во всех органах и тканях. При нарушении обмена магния изменяется обмен кальция: при дефиците магния возникает гиперкальциемия и усиливается выведение кальция с мочой. Одновременно происходит истощение запасов калия в органах и тканях, что в конечном итоге приводит к развитию «травяной тетании», этиологию которой связывают с дефицитом магния или нарушением соотношения элементов. Избыток магния в рационе вызывает повышенное выделение из организма как фосфора, так и кальция. Кроме того, переизбыток магния значительно снижает всасывание фосфора. Между обменом кальция, фосфора и витаминов А и D существует тесная связь. Витамин D значительно повышает усвоение фосфора из желудочно-кишечного тракта и его сохранение в организме, а также реабсорбцию в по-
чечных канальцах, активизирует процессы отложения и включения фосфора в костную ткань. Эти процессы существенно нарушаются при D-авитаминозе. Аналогичным действием обладает и витамин А, нормализуя уровень неорганического фосфата и кальция в крови.
Магний. В организме магний занимает четвертое место среди катионов и второе после калия среди внутриклеточных катионов. Он играет важную роль, являясь кофактором различных ферментов, большая часть которых утилизирует АТФ. Магний увеличивает порог стимуляции нервных волокон и способен в некоторой степени ингибировать процесс освобождения ацетил-холина в нервно-мышечных синапсах. При недостатке магния у животных повышается общая возбудимость. Магний снижает периферическое сопротивление кровеносных сосудов и давление крови, усиливает действие трипсина, активирует работу кишечника, поджелудочной железы и процессы белкового синтеза. Магний включается в пропердиновую систему, обеспечивая естественную резистентность организма к различным заболеваниям.
Лишь небольшая часть магния (около 1 %) находится во внеклеточной жидкости, а 60 % его сосредоточено в кости в структуре кристаллов апатита. Приблизительно 20 % общего магния организма содержится в мышцах: он способствует взаимодействию актина с миозином за счет формирования активного магний-белкового комплекса, обеспечивающего процесс сокращения мышц. Остальные 20 % присутствуют в других тканях: наибольшее содержание обнаружено в печени. Концентрация магния в крови поддерживается в узких пределах — от 1,5 до 1,9 мэкв/л. В почках при образовании первичной мочи содержащийся в плазме крови магний подвергается ультрафильтрации, причем 95 % его реабсорби-руется, а 5 % экскретируется с мочой. Реабсорбция магния начинается в проксимальных канальцах. В нисходящем колене петли Генле концентрация магния возрастает в несколько раз по отношению к ультрафильтрату за счет удаления значительных количеств реабсорбируемой воды. Толстое восходящее колено петли Генле играет основную роль — здесь реабсорбируется до 60 % профильтровавшегося магния.
Сера входит в состав аминокислот (метионин, цистин, цис-теин), структурных и функциональных белков (кератин, муцин, мукоиды), а также физиологически активных веществ (глютадион, инсулин, окситоцин и др.), витаминов тиамина (В[) и биотина. Особую роль она играет в формировании шерстного покрова и ороговении кожи за счет высокого содержания серосодержащего белка кератина. Метионин служит источником метальных групп при синтезе физиологически активных веществ — холина, ацетил-холина и адреналина. Цистеин служит предшественником кофер-мента А, участвующего в обмене белков, жиров и углеводов. Му-котинсульфаты ингибируют протеолитические ферменты и пре-
458
459
дотвращают переваривание стенок желудочно-кишечного тракта. Гепарин — смесь сульфатированных полисахаридов, является мощным антикоагулянтом. Таурин — раминосульфоновая кислота, производное метионина и цистеина, необходимый компонент корма для животных, особенно кошек, которые не способны использовать для этой цели аминокислоту глицин. Соединения серы в организме участвуют в детоксикации, связывая ядовитые вещества — фенолы, индоксилы и другие продукты обмена.
Сера поступает в организм в основном с кормом, в составе белков и серосодержащих аминокислот. Регуляцию обмена серы обеспечивают эндокринные факторы: соматотропный гормон гипофиза стимулирует включение аминокислот в белки и регулирует уровень глютатиона в крови, а также стимулирует рост шерсти. Действие тиреоидных гормонов тесно связано с обменом серосодержащих аминокислот за счет активации процессов транссульфирования. Из организма сера выделяется с мочой в виде солей серной кислоты и частично с калом и жиропотом ( у овец).
Хлор — важнейший анион в составе жидкостей организма. Постоянно присутствует в виде соединений с натрием и марганцем и участвует в разнообразных физиологических и биохимических реакциях. Хлор в составе хлористо-водородной (соляной) кислоты обеспечивает кислую реакцию желудочного сока. Ионы хлора обладают осмотической активностью и содействуют поддержанию осмотического давления в жидкостях организма. Анионы хлора — непременные участники процессов возбуждения в ЦНС.
Железо — широко распространенный в живой природе элемент. Достаточно высокое содержание в организме животных дает основание отнести его к разряду макроэлементов. Однако если исключить железо, находящееся в геминовой форме, то его концентрация в тканях окажется меньше, чем такого типичного микроэлемента, как цинк. Геминовое железо входит в состав гемоглобина, миоглобина и гемосодержащих ферментов — цитохро-мов, цитохромоксидазы, каталазы и пероксидазы. Негеминовое железо составляют трансферрин, ферритин, гемосидерин и некоторые протеинаты железа (феррофлавопротеиды).
Железосодержащим молекулам присущи следующие основные функции: транспорт электронов (цитохромы, железосеро-протеиды); транспорт и депонирование кислорода (гемоглобин, миоглобин, эритрокруорин, гемэретрин); формирование активных центров окислительно-восстановительных ферментов (окси-дазы, гидроксилазы и др.); транспорт и депонирование железа (трансферрин, гемосидерин, ферритин, сидерхромы). Железо поступает в организм животного с кормом. При составлении рационов следует учитывать, что излишний кальций конкурирует с железом за всасывание, уменьшение кислотности желудочного сока снижает усвояемость железа, для полноценного усвоения
железа необходимо адекватное содержание витаминов группы В (рибофлавина и пиридоксина). Дефицит витамина А нарушает процесс всасывания, белки животного происхождения усиливают усвоение железа, а белки сои уменьшают. После всасывания железо накапливается в печени, селезенке и слизистой оболочке кишечника в виде ферритина.
Основной признак дефицита железа — нарушение образования эритроцитов и, как следствие, микроцитарная гипохромная анемия. Недостаточность железа может проявляться в повышенной хрупкости костей, ломкости когтей, нарушении работы сердца и др. Минеральная подкормка в виде сернокислого железа крайне необходима для полноценного развития поросят-сосунов, реже телят до 2...3 мес, поскольку в этот период часто возникает анемия как следствие железодефицитных состояний, возникающих при кормлении молоком.
- Москва «КолосС» 2004
- Глава 1 регуляция физиологических функций
- 1.1. Понятие о гомеостазе
- 1.2. Гуморальные и нервные механизмы регуляции функций
- 1.3. Единство нервной и гуморальной регуляции
- 1.4. Основные принципы регуляции физиологических функций
- Глава 2 физиология возбудимых тканей
- 2.1. Физиология процессов возбуждения в нервной системе
- 2.1.1. Структурные особенности нервных клеток и волокон
- 2.1.2. Электрические явления в возбудимых тканях
- 3 А Рис. 2.3. Опыты Гальвани (а) и Маттеучи (б), доказывающие наличие электрических потенциалов в нервно-мышечном препарате:
- 2.1.2.1. Ультраструктурная организация клеточной мембраны
- 2 Рис. 2.4. Схема регистрации мембранного потенциала (а) и фрагмент клеточной мембраны (б) нервной клетки:
- 2.1.2.2. Потенциал покоя
- 2.1.2.3. Роль активного транспорта ионов в формировании мембранного потенциала
- 2.1.2.4. Механизмы генерации потенциала действия
- 2.1.2.5. Ионные каналы
- 2.1.2.6. Свойства потенциала действия
- 2.1.2.7. Распространение возбуждения
- 2.1.2.8. Передача нервного возбуждения между клетками. Представление о синапсах
- 2.2. Физиологические свойства мыщц
- 2.2.1 .Структурные основы сокращения мышц. Поперечнополосатые мышцы
- 2.2.2. Теория скольжения нитей
- 2.2.3. Электромеханическое скольжение
- 2.2.4. Механика мышцы
- 2.2.5. Метаболические группы поперечнополосатых мышц. Гладкие мышцы
- Глава 3 физиология системы крови
- 3.1. Значение и функции крови
- 3.2. Количество крови в организме
- 3.3. Состав крови
- 3.4. Физико-химические свойства крови
- 3.5. Гемостаз и свертывание крови
- 3.1. Плазменные факторы свертывания крови
- 3.6. Форменные элементы крови
- 3.7. Регуляция кроветворения
- 3.8. Группы крови
- 3.2. Распределение агглютиногенов и агглютининов в крови системы аво
- Глава 4 физиология иммунной системы
- 4.1. Структура иммунной системы
- 4.1.1. Центральные органы иммунной системы
- 4.1.2. Периферические органы иммунной системы
- 4.1.3. Клетки иммунной системы
- 4.2. Индукция и регуляция иммунного ответа
- 4.2.1. Антигены
- 4.2.2. Активация лимфоцитов
- 4.2.3. Иммунный ответ гуморального типа
- 4.2.4. Антитела
- 4.2.5. Иммунный ответ клеточного типа
- 4.3. Факторы естественной резистентности
- 4.3.1. Естественные барьеры
- 4.3.2. Система фагоцитов
- III стадия n стадия
- 4.3.3. Система комплемента, пропердин
- 4.3.4. Лизоцим
- 4.3.5. Интерфероны
- 4.3.6. Взаимодействие антиген—антитело
- Глава 5 физиология пищеварения
- 5.1. Сущность процесса пищеварения
- 5.2. Физиологические основы голода и насыщения
- 5.3. Методы исследования деятельности пищеварительного тракта
- 5.4. Пищеварение в ротовой полости
- 5.5. Пищеварение в желудке
- 5.1. Функциональное значение секреторных клеток желудка
- Желудочка по Гейденгайну (а) и и. П. Павлову (б):
- 5.6. Особенности желудочного пищеварения у некоторых видов животных
- 5.7. Пищеварение в тонком кишечнике
- 5.8. Пищеварение в толстом кишечнике
- 5.9. Всасывание
- Ние. 5.15. Схематическое изображение функционирования сократительной системы апикальной части эпителиальных клеток тонкой кишки
- 5.2. Гормоны желудочно-кишечного тракта
- 5.11. Пищеварение у птиц
- Глава 6 физиология кровообращения
- 6.1. Физиология сердца
- 6.2. Свойства сердечной мышцы
- 6.3. Сердечный цикл и клапанный аппарат сердца
- 6.1. Частота сокращений сердца в 1 мин
- 6.4. Физические явления, связанные с работой сердца
- 6.2. Систолический и минутный объемы крови у животных
- 6.5. Регуляция работы сердца
- 6.6. Движение крови по кровеносным сосудам
- 6.3. Величина артериального давления у животных, мм рт. Ст.
- 6.7. Регуляция движения крови по сосудам
- 6.8. Особенности кровообращения при различных состояниях организма
- Глава 7 физиология дыхания
- 7.1. Внешнее дыхание
- 7.3. Изменение давления в грудной полости при дыхании:
- 7.1. Частота дыхательных движений в 1 мин
- 7.2. Газообмен в легких
- 7.3. Транспорт газов кровью, газообмен в тканях
- 7.4. Регуляция дыхания
- Сосудистых
- 7.5. Особенности дыхания у птиц
- Глава 8 физиология выделительных процессов
- 8.1. Выделительная функция почек
- 8.2. Структурная организация почек
- 8.3. Мочеобразование
- 8.1. Концентрирующая способность почки
- 8.4. Гомеостатическая функция почек
- 8.2. Факторы, влияющие на клубочковую фильтрацию
- 8.3. Факторы, регулирующие канальцевую реабсорбцию
- 8.5. Регуляция процессов образования мочи
- 8.6. Состав и свойства конечной мочи
- 8.4. Объем мочи, выделяемой за сутки
- 8.7. Механизмы выведения мочи
- 8.8. Выделительная функция кожи
- Глава 9 физиология размножения
- 9.1. Половое созревание и половая зрелость
- 9.1. Половая и физиологическая зрелость самки
- 9.2. Физиология репродуктивной системы самцов
- 9.2. Средние количественные показатели спермы
- 9.3. Физиология репродуктивной системы самок
- 9.3. Особенности половых циклов
- 9.4. Оплодотворение
- 9.5. Беременность
- 9.6. Различные типы плацент у млекопитающих:
- 9.6. Роды
- 9.4. Продолжительность родов
- 9.7. Послеродовой период
- 9.8. Трансплантация зародышей у животных
- 9.9. Особенности размножения птиц
- Глава 10 физиология лактации
- 10.1. Развитие молочной железы
- 10.1. Химический состав секретов молочной железы, %
- 10.2. Тип плацентации и пассивная передача иммунитета (X -о — отсутствие передачи)
- 10.4. Пассивный перенос материнских антител
- 10.3. Передача пассивного иммунитета
- 10.2. Биосинтез основных компонентов молока
- 10.3. Физико-химические показатели молока
- 10.4. Структурная организация секреторного процесса
- 10.5. Регуляция секреции молока
- 10.6. Выведение молока
- 10.7. Физиологические основы машинного доения
- Глава 11 физиология обмена веществ и энергии
- 11.1. Терморегуляция
- 11.1. Ректальная температура у различных видов животных
- 11.2. Белковый (азотистый) обмен
- 11.2.1. Основные этапы белкового обмена
- 11.2.2. Регуляция белкового обмена
- 11.3. Углеводный обмен
- 11.3.1. Основные этапы углеводного обмена
- 11.3.2. Регуляция углеводного обмена
- 11.4. Липидный обмен
- 11.4.1. Основные этапы липидного обмена
- 11.4.2. Регуляция липидного обмена
- 11.5. Обмен воды
- 11.2. Концентрация электролитов в жидкостях организма, мэкв/л
- 11.6. Минеральный обмен
- 11.6.1. Физиологическая роль макроэлементов
- 11.6.2. Физиологическая роль микроэлементов
- 11.6.3. Регуляция минерального обмена
- 11.7. Витамины
- 11.7.1. Жирорастворимые витамины
- 11.7.2. Водорастворимые витамины
- 12.1. Механизмы взаимодействия гормона с клетками
- 12.2. Общие механизмы регуляции внутренней секреции
- 12.1. Нейрогормоны гипоталамо-гипофизарной системы
- 12.3. Гипофиз
- 12.4. Щитовидная железа
- 12.5. Надпочечники
- 12.6. Поджелудочная железа. Внутренняя секреция
- 12.7. Эндокринная функция половых желез
- 12.8. Тимус
- 12.9. Эпифиз
- 12.10. Тканевые гормоны
- 12.11. Гормоны и продуктивность животных
- Глава 13
- 13.1. Нейроны и синапсы
- 13.2. Рефлекторная деятельность
- 13.3. Свойства нервных центров
- 13.4. Координация рефлекторных процессов
- 13.5. Частная физиология
- 13.5.1. Спинной мозг
- Ного мозга по Рекседу. Цифрами обозначены слои нерв пых клеток
- 13.5.2. Продолговатый мозг и варолиев мост
- 13.5.3. Средний мозг
- 13.5.4. Ретикулярная формация
- 13.5.5. Мозжечок
- 13.5.6. Промежуточный мозг
- 13.5.7. Подкорковые ядра
- 13.6. Физиология вегетативной нервной системы
- 13.1. Строение и функции симпатической и парасимпатической нервных систем
- Глава 14
- 14.1. Понятие о нервизме
- 14.2. Методы исследования функций коры больших полушарий
- 14.3. Характеристика условных рефлексов и механизм их образования
- Слуховая
- 14.4. Торможение условных рефлексов
- 14.5. Взаимоотношения возбуждения и торможения в коре больших полушарий
- 14.6. Типы высшей нервной деятельности
- 14.7. Сон и гипноз
- 14.8. Две сигнальные системы действительности
- 14.9. Теория функциональных систем
- Глава 15 физиология анализаторов
- 15.1. Рецепторные клетки — начальное звено анализатора
- 15.2. Двигательный анализатор
- 15.2.1. Мышечное веретено
- 15.2.2. Сухожильный рецептор гольджи
- 15.2.3. Рефлекс на растяжение мышцы
- 15.3. Кожный анализатор
- 15.3.1. Механорецепторы кожи
- 15.3.2. Терморецепторы кожи
- 15.3.3. Болевые рецепторы кожи
- 15.4. Обонятельный анализатор
- Рецептора:
- 15.5. Вкусовой анализатор
- 15.6. Слуховой анализатор
- Активности:
- 15.7. Анализатор положения тела в пространстве
- 15.8. Зрительный анализатор
- 15.8.1. Структура и функция сетчатки
- 15.8.2. Цветовое зрение
- 15.8.3. Переработка зрительных сигналов в сетчатке
- 15.8.4. Защитный аппарат глаза
- 15.9. Анализаторы внутренней среды opi лии 1мл
- 15.9.1. Висцеральные механорецепторы
- 15.9.2. Висцеральные терморецепторы
- 15.9.3. Висцеральные хеморецепторы
- 15.9.4. Болевые висцеральные рецепторы
- Глава 16 этология
- 16.1. Формы поведения
- 16.2. Поведенческие реакции
- 16.3. Факторы, влияющие на поведение
- Оглавление
- Глава 1. Регуляция физиологических функций (т. А. Эйсымонт) 17
- Глава 2. Физиология возбудимых тканей (к п. Алексеев) 27
- Глава 7. Физиология дыхания (т. А. Эйсымонт) 291
- Глава 9. Физиология размножения (и. О. Боголюбова) 351
- Глава 10. Физиология лактации (в. Г. Скопичев) 392
- Глава 12. Физиология эндокринной системы (в. Г. Скопичев) 483
- Глава 13. Физиология центральной нервной системы (а. И. Енукашвили) 544
- Глава 15. Физиология анализаторов (н.П.Алексеев) 628
- Глава 16. Этология (т.А. Эйсымонт).., 697
- 214000, Г. Смоленск, проспект им. Ю. Гагарина, 2.