13.5.2. Продолговатый мозг и варолиев мост
Продолговатый мозг и варолиев мост вместе составляют задний мозг. Анатомически и функционально задний мозг связан со спинным мозгом, мозжечком и большими полушариями головного мозга. В нем замыкаются дуги многих сложнокоординирован-ных двигательных процессов.
570
571
Сегментарное строение, четко выраженное в спинном мозге, стерто в продолговатом. Сюда вступают афферентные волокна от слуховых рецепторов, рецепторов полости рта, кожи лицевой части головы, сердца, крупных сосудов и легких, слизистых оболочек глаз, ряда рецепторов желудка, печени, поджелудочной железы, тонких кишок. Но в органах грудной и брюшной полости имеются также рецепторы, от которых афферентные волокна идут не в продолговатый, а в спинной мозг. Эфферентные волокна нейронов продолговатого мозга иннервируют все мышцы лица, сердце, бронхи, гортань, пищевод, желудок, поджелудочную железу, печень, кишечник. Иннервация внутренних органов осуществляется парасимпатическими волокнами совместно с симпатическими волокнами, лежащими в спинном мозге.
Из области продолговатого мозга и варолиева моста выходят следующие черепно-мозговые нервы: тройничный, отводящий, лицевой, слуховой, языкоглоточный, блуждающий, добавочный, подъязычный.
Продолговатый мозг играет большую роль в регуляции мышечного тонуса. Скелетные мышцы находятся в постоянном тонусе, за счет которого преодолевается действие силы тяжести и тело сохраняет равновесие. Тонус мышц имеет рефлекторную природу. Начало дуги этого рефлекса лежит в мышцах и сухожилиях.
Если головной мозг вместе со средним мозгом и его красными ядрами удален, а продолговатый мозг сохранен и не отделен от спинного, то у млекопитающих развивается сильное, часами и сутками удерживаемое напряжение разгибательных мышц (рис. 13.13).
Конечности такого животного вытянуты, и согнуть их можно лишь с трудом; шейные мышцы, разгибающие голову, напряжены; позвоночник несколько выгнут дугой кверху.
Таким образом, все мышцы, напряжение которых противостоит действию силы тяжести, оказываются после отделения продолговатого мозга от среднего в состоянии длительного тонического напряжения. Это
Рис. 13.13. Децеребрационная ригидность:
а — кошка с выключенными большими полушариями (путем перевязки сосудов); б— то же при одновременном выключении мозжечка
резкое усиление тонуса разгибательных мышц носит название децеребрационной ригидности (децеребрация — удаление мозга выше продолговатого). Тонус разгибателей при децеребрационной ригидности превышает тонус сгибателей, но длительное напряжение сгибателей способствует тому, что конечности становятся как бы твердыми опорами и могут удерживать тяжесть тела.
Децеребрационная ригидность не наступает, если средний мозг животного связан с продолговатым мозгом, а также если продолговатый отделен от спинного мозга. Отсюда следует, что в продолговатом мозге лежат нервные клетки, которые могут приводить в возбуждение спинальные нейроны, иннервирующие разгибатели. Если продолговатый мозг связан со средним мозгом, ригидность также не наступает, т. е. от среднего мозга исходят влияния, угнетающие стимуляцию разгибательных рефлексов со стороны продолговатого мозга.
Заключительный этап в возникновении непомерного тонуса связан с рефлекторной деятельностью ядра вестибулярного нерва. Волокна от рецепторов вестибулярного аппарата в продолговатом мозгу контактируют с массой клеток, образующих так называемое вестибулярное ядро. Оперативное удаление вестибулярного ядра и особенно его части, известной как ядро Дейтерса, резко ослабляет децеребрационную ригидность. Разрушение вместе с ядром Дейтерса ретикулярной формации продолговатого мозга совершенно ее прекращает.
Для развития децеребрационной ригидности необходимо поступление в ЦНС импульсов от рецепторов разгибательных мышц. Инъекция в эти мышцы раствора новокаина или перерезка соответствующих задних корешков снимает тонус мышц-разгибателей. Следовательно, децеребрационную ригидность надо рассматривать как результат усиления рефлексов, осуществляемых совместно спинным и продолговатым мозгом в ответ на импульсы, поступающие как от рецепторов мышц-разгибателей, растягиваемых под действием силы тяжести, так и от рецепторов лабиринта. Эти рефлексы в норме всегда уравновешиваются воздействиями, рефлекторно возникающими в среднем мозге, мозжечке, а у высших млекопитающих главным образом в коре больших полушарий.
Роль продолговатого мозга в осуществлении децеребрационной ригидности обусловлена постоянным поступлением импульсов от важнейших рецепторов дыхательной и кровеносной систем, а также с лабиринтов, вследствие этого он постоянно воздействует на рефлекторные центры спинного мозга, повышая их возбудимость. При отделении спинного мозга от продолговатого возбудимость нервного центра никогда не достигает той степени, при которой тонус мышц-разгибателей в ответ на импульсы от их рецепторов рефлекторно усиливался бы до степени, характеризующей децеребрационную ригидность.
573
Децеребрационная ригидность — это состояние, конечно, совершенно нефизиологичное, но по ней можно судить о взаимоотношениях между разными образованиями ЦНС. Надо заметить, что механизм этого процесса еще не совсем ясен. Это состояние не всегда наступает после децеребрации, иногда оно выражено очень резко, а иногда почти не проявляется.
Продолговатый мозг участвует в регуляции проводниковых рефлексов и в осуществлении таких актов, как ходьба и стояние, для которых необходима интегративная деятельность ЦНС. Буль-барное животное, у которого сохранены лишь спинной и продолговатый мозг, способно к более сложным рефлекторным процессам, чем спинальное, так как все основные функции в более полной мере объединены и скоординированы.
Варолиев мост является центральной частью заднего мозга. Он имеет вид толстого белого вала. Серое вещество образуют ядра черепно-мозговых нервов (V—VIII пары), ядра ретикулярной формации и собственные ядра моста.
Белое вещество состоит из продольных и поперечных пучков нервных волокон. Продольные волокна идут по нижней поверхности моста в продолговатый мозг, образуя в нем пирамиды. Сверху они составляют восходящие и нисходящие пути двусторонних связей моста. Поперечные волокна направляются в ножки мозжечка.
Чувствительные волокна черепно-мозговых нервов проводят сигналы от вкусовых рецепторов языка, рецепторов кожи и мышц головы, глаз и зубов. Эфферентные волокна обеспечивают мимику. Таким образом, рефлекторная деятельность варолиева моста дополняет защитные и пищевые рефлексы, осуществляемые продолговатым мозгом.
- Москва «КолосС» 2004
- Глава 1 регуляция физиологических функций
- 1.1. Понятие о гомеостазе
- 1.2. Гуморальные и нервные механизмы регуляции функций
- 1.3. Единство нервной и гуморальной регуляции
- 1.4. Основные принципы регуляции физиологических функций
- Глава 2 физиология возбудимых тканей
- 2.1. Физиология процессов возбуждения в нервной системе
- 2.1.1. Структурные особенности нервных клеток и волокон
- 2.1.2. Электрические явления в возбудимых тканях
- 3 А Рис. 2.3. Опыты Гальвани (а) и Маттеучи (б), доказывающие наличие электрических потенциалов в нервно-мышечном препарате:
- 2.1.2.1. Ультраструктурная организация клеточной мембраны
- 2 Рис. 2.4. Схема регистрации мембранного потенциала (а) и фрагмент клеточной мембраны (б) нервной клетки:
- 2.1.2.2. Потенциал покоя
- 2.1.2.3. Роль активного транспорта ионов в формировании мембранного потенциала
- 2.1.2.4. Механизмы генерации потенциала действия
- 2.1.2.5. Ионные каналы
- 2.1.2.6. Свойства потенциала действия
- 2.1.2.7. Распространение возбуждения
- 2.1.2.8. Передача нервного возбуждения между клетками. Представление о синапсах
- 2.2. Физиологические свойства мыщц
- 2.2.1 .Структурные основы сокращения мышц. Поперечнополосатые мышцы
- 2.2.2. Теория скольжения нитей
- 2.2.3. Электромеханическое скольжение
- 2.2.4. Механика мышцы
- 2.2.5. Метаболические группы поперечнополосатых мышц. Гладкие мышцы
- Глава 3 физиология системы крови
- 3.1. Значение и функции крови
- 3.2. Количество крови в организме
- 3.3. Состав крови
- 3.4. Физико-химические свойства крови
- 3.5. Гемостаз и свертывание крови
- 3.1. Плазменные факторы свертывания крови
- 3.6. Форменные элементы крови
- 3.7. Регуляция кроветворения
- 3.8. Группы крови
- 3.2. Распределение агглютиногенов и агглютининов в крови системы аво
- Глава 4 физиология иммунной системы
- 4.1. Структура иммунной системы
- 4.1.1. Центральные органы иммунной системы
- 4.1.2. Периферические органы иммунной системы
- 4.1.3. Клетки иммунной системы
- 4.2. Индукция и регуляция иммунного ответа
- 4.2.1. Антигены
- 4.2.2. Активация лимфоцитов
- 4.2.3. Иммунный ответ гуморального типа
- 4.2.4. Антитела
- 4.2.5. Иммунный ответ клеточного типа
- 4.3. Факторы естественной резистентности
- 4.3.1. Естественные барьеры
- 4.3.2. Система фагоцитов
- III стадия n стадия
- 4.3.3. Система комплемента, пропердин
- 4.3.4. Лизоцим
- 4.3.5. Интерфероны
- 4.3.6. Взаимодействие антиген—антитело
- Глава 5 физиология пищеварения
- 5.1. Сущность процесса пищеварения
- 5.2. Физиологические основы голода и насыщения
- 5.3. Методы исследования деятельности пищеварительного тракта
- 5.4. Пищеварение в ротовой полости
- 5.5. Пищеварение в желудке
- 5.1. Функциональное значение секреторных клеток желудка
- Желудочка по Гейденгайну (а) и и. П. Павлову (б):
- 5.6. Особенности желудочного пищеварения у некоторых видов животных
- 5.7. Пищеварение в тонком кишечнике
- 5.8. Пищеварение в толстом кишечнике
- 5.9. Всасывание
- Ние. 5.15. Схематическое изображение функционирования сократительной системы апикальной части эпителиальных клеток тонкой кишки
- 5.2. Гормоны желудочно-кишечного тракта
- 5.11. Пищеварение у птиц
- Глава 6 физиология кровообращения
- 6.1. Физиология сердца
- 6.2. Свойства сердечной мышцы
- 6.3. Сердечный цикл и клапанный аппарат сердца
- 6.1. Частота сокращений сердца в 1 мин
- 6.4. Физические явления, связанные с работой сердца
- 6.2. Систолический и минутный объемы крови у животных
- 6.5. Регуляция работы сердца
- 6.6. Движение крови по кровеносным сосудам
- 6.3. Величина артериального давления у животных, мм рт. Ст.
- 6.7. Регуляция движения крови по сосудам
- 6.8. Особенности кровообращения при различных состояниях организма
- Глава 7 физиология дыхания
- 7.1. Внешнее дыхание
- 7.3. Изменение давления в грудной полости при дыхании:
- 7.1. Частота дыхательных движений в 1 мин
- 7.2. Газообмен в легких
- 7.3. Транспорт газов кровью, газообмен в тканях
- 7.4. Регуляция дыхания
- Сосудистых
- 7.5. Особенности дыхания у птиц
- Глава 8 физиология выделительных процессов
- 8.1. Выделительная функция почек
- 8.2. Структурная организация почек
- 8.3. Мочеобразование
- 8.1. Концентрирующая способность почки
- 8.4. Гомеостатическая функция почек
- 8.2. Факторы, влияющие на клубочковую фильтрацию
- 8.3. Факторы, регулирующие канальцевую реабсорбцию
- 8.5. Регуляция процессов образования мочи
- 8.6. Состав и свойства конечной мочи
- 8.4. Объем мочи, выделяемой за сутки
- 8.7. Механизмы выведения мочи
- 8.8. Выделительная функция кожи
- Глава 9 физиология размножения
- 9.1. Половое созревание и половая зрелость
- 9.1. Половая и физиологическая зрелость самки
- 9.2. Физиология репродуктивной системы самцов
- 9.2. Средние количественные показатели спермы
- 9.3. Физиология репродуктивной системы самок
- 9.3. Особенности половых циклов
- 9.4. Оплодотворение
- 9.5. Беременность
- 9.6. Различные типы плацент у млекопитающих:
- 9.6. Роды
- 9.4. Продолжительность родов
- 9.7. Послеродовой период
- 9.8. Трансплантация зародышей у животных
- 9.9. Особенности размножения птиц
- Глава 10 физиология лактации
- 10.1. Развитие молочной железы
- 10.1. Химический состав секретов молочной железы, %
- 10.2. Тип плацентации и пассивная передача иммунитета (X -о — отсутствие передачи)
- 10.4. Пассивный перенос материнских антител
- 10.3. Передача пассивного иммунитета
- 10.2. Биосинтез основных компонентов молока
- 10.3. Физико-химические показатели молока
- 10.4. Структурная организация секреторного процесса
- 10.5. Регуляция секреции молока
- 10.6. Выведение молока
- 10.7. Физиологические основы машинного доения
- Глава 11 физиология обмена веществ и энергии
- 11.1. Терморегуляция
- 11.1. Ректальная температура у различных видов животных
- 11.2. Белковый (азотистый) обмен
- 11.2.1. Основные этапы белкового обмена
- 11.2.2. Регуляция белкового обмена
- 11.3. Углеводный обмен
- 11.3.1. Основные этапы углеводного обмена
- 11.3.2. Регуляция углеводного обмена
- 11.4. Липидный обмен
- 11.4.1. Основные этапы липидного обмена
- 11.4.2. Регуляция липидного обмена
- 11.5. Обмен воды
- 11.2. Концентрация электролитов в жидкостях организма, мэкв/л
- 11.6. Минеральный обмен
- 11.6.1. Физиологическая роль макроэлементов
- 11.6.2. Физиологическая роль микроэлементов
- 11.6.3. Регуляция минерального обмена
- 11.7. Витамины
- 11.7.1. Жирорастворимые витамины
- 11.7.2. Водорастворимые витамины
- 12.1. Механизмы взаимодействия гормона с клетками
- 12.2. Общие механизмы регуляции внутренней секреции
- 12.1. Нейрогормоны гипоталамо-гипофизарной системы
- 12.3. Гипофиз
- 12.4. Щитовидная железа
- 12.5. Надпочечники
- 12.6. Поджелудочная железа. Внутренняя секреция
- 12.7. Эндокринная функция половых желез
- 12.8. Тимус
- 12.9. Эпифиз
- 12.10. Тканевые гормоны
- 12.11. Гормоны и продуктивность животных
- Глава 13
- 13.1. Нейроны и синапсы
- 13.2. Рефлекторная деятельность
- 13.3. Свойства нервных центров
- 13.4. Координация рефлекторных процессов
- 13.5. Частная физиология
- 13.5.1. Спинной мозг
- Ного мозга по Рекседу. Цифрами обозначены слои нерв пых клеток
- 13.5.2. Продолговатый мозг и варолиев мост
- 13.5.3. Средний мозг
- 13.5.4. Ретикулярная формация
- 13.5.5. Мозжечок
- 13.5.6. Промежуточный мозг
- 13.5.7. Подкорковые ядра
- 13.6. Физиология вегетативной нервной системы
- 13.1. Строение и функции симпатической и парасимпатической нервных систем
- Глава 14
- 14.1. Понятие о нервизме
- 14.2. Методы исследования функций коры больших полушарий
- 14.3. Характеристика условных рефлексов и механизм их образования
- Слуховая
- 14.4. Торможение условных рефлексов
- 14.5. Взаимоотношения возбуждения и торможения в коре больших полушарий
- 14.6. Типы высшей нервной деятельности
- 14.7. Сон и гипноз
- 14.8. Две сигнальные системы действительности
- 14.9. Теория функциональных систем
- Глава 15 физиология анализаторов
- 15.1. Рецепторные клетки — начальное звено анализатора
- 15.2. Двигательный анализатор
- 15.2.1. Мышечное веретено
- 15.2.2. Сухожильный рецептор гольджи
- 15.2.3. Рефлекс на растяжение мышцы
- 15.3. Кожный анализатор
- 15.3.1. Механорецепторы кожи
- 15.3.2. Терморецепторы кожи
- 15.3.3. Болевые рецепторы кожи
- 15.4. Обонятельный анализатор
- Рецептора:
- 15.5. Вкусовой анализатор
- 15.6. Слуховой анализатор
- Активности:
- 15.7. Анализатор положения тела в пространстве
- 15.8. Зрительный анализатор
- 15.8.1. Структура и функция сетчатки
- 15.8.2. Цветовое зрение
- 15.8.3. Переработка зрительных сигналов в сетчатке
- 15.8.4. Защитный аппарат глаза
- 15.9. Анализаторы внутренней среды opi лии 1мл
- 15.9.1. Висцеральные механорецепторы
- 15.9.2. Висцеральные терморецепторы
- 15.9.3. Висцеральные хеморецепторы
- 15.9.4. Болевые висцеральные рецепторы
- Глава 16 этология
- 16.1. Формы поведения
- 16.2. Поведенческие реакции
- 16.3. Факторы, влияющие на поведение
- Оглавление
- Глава 1. Регуляция физиологических функций (т. А. Эйсымонт) 17
- Глава 2. Физиология возбудимых тканей (к п. Алексеев) 27
- Глава 7. Физиология дыхания (т. А. Эйсымонт) 291
- Глава 9. Физиология размножения (и. О. Боголюбова) 351
- Глава 10. Физиология лактации (в. Г. Скопичев) 392
- Глава 12. Физиология эндокринной системы (в. Г. Скопичев) 483
- Глава 13. Физиология центральной нервной системы (а. И. Енукашвили) 544
- Глава 15. Физиология анализаторов (н.П.Алексеев) 628
- Глава 16. Этология (т.А. Эйсымонт).., 697
- 214000, Г. Смоленск, проспект им. Ю. Гагарина, 2.