3.17.2. Высшие интегративные системы мозга
Наряду со специфическими и неспецифическими системами в самостоятельную категорию выделяют ассоциативные таламокортикальные системы. Применительно к высшим млекопитающим это своеобразные структуры, не принадлежащие к какой-либо одной сенсорной системе, но получающие информацию от нескольких сенсорных систем. Ассоциативные ядра таламуса относятся к "внутренним ядрам", афферентные входы к которым идут не от сенсорных специфических путей, а от их переключательных образований. В свою очередь, эти ядра проецируются на ограниченные корковые территории, именуемые ассоциативными полями.
Согласно анатомическим данным, различают две ассоциативные системы: таламопариетальную и таламофронтальную. Среди таламических ядер, проецирующихся на теменную кору, по многообразию связей и особенностям нейронной активности особое место занимает комплекс заднее (каудальное) латеральное ядро - подушка таламуса. Сама теменная кора является местом широкой гетеросенсорной конвергенции по путям от специфических, ассоциативных и неспецифических ядер таламуса, а также по волокнам от сенсорных корковых зон и симметричной коры противоположного полушария.
Таламопариетальная ассоциативная система представляет собой: 1) центральный аппарат первичного одновременного анализа и синтеза обстановочной афферентации и запуска механизмов ориентационных движений глаз и туловища; 2) один из центральных аппаратов "схемы тела" и сенсорного контроля текущей двигательной активности; 3) важнейший аппарат предпусковой интеграции, участвующий в формировании целостных полимодальных образов.
Таламофронтальная ассоциативная система представлена медиодорсальным ядром таламуса, проецирующимся на лобную долю больших полушарий. Последнюю, имеющую множество нисходящих связей, рассматривают в качестве коркового модулятора лимбической системы. Основная функция таламо-фронтальной системы состоит в программировании целенаправленных поведенческих актов на основе доминирующей мотивации и прошлого жизненного опыта.
В качестве основных механизмов работы ассоциативных систем определяют следующие.
1. Механизм мультисенсорной конвергенции - к ассоциативным полям коры конвергируют афферентные посылки, несущие информацию о биологической значимости того или иного сигнала. Разделенные афферентные влияния вступают в интеграцию на кортикальном уровне для формирования программы целенаправленного поведенческого акта.
2. Механизм пластических перестроек при гетеромодальных сенсорных воздействиях, которые проявляются либо в избирательном привыкании, либо в сенситизации, либо в формировании ответов экстраполяционного типа. Доминирующая мотивация определяет спектр конвергирующих модальностей и характер их корковой интеграции.
3. Механизм краткосрочного хранения следов интеграции, заключающийся в длительной внутрикорковой или таламокорковой реверберации импульсных потоков.
3.17.3. Эволюция ассоциативных систем
Развитие современных млекопитающих шло параллельными рядами, и хотя общий план конструкции мозга сохранился, таламокортикальные системы претерпели наиболее существенные морфофункциональные перестройки. Рассматривая степень развития ассоциативных систем как показатель филогенетического статуса вида, можно выделить три основных уровня их эволюции (рис. 3.54).
Мозг насекомоядных рассматривают как предшественник с его дальнейшим усложнением в параллельных рядах эволюции грызунов, хищных и приматов. У насекомоядных выделена примитивная ассоциативная таламокортикальная система, которая хотя и участвует в процессах сенсомоторного синтеза т е непосредственной сенсорной активации выходных элементов коры, но не способна к формированию более сложных актов сенсорной интеграции модально специфических влияний, предшествующих запуску выходных корковых нейронов.
Рис. 3.54 Эволюционное созревание интегративных аппаратов мозга у насекомоядных (А), хищных (Б) и приматов (В) Выделены лишь две специфические сенсорные системы - зрительная (1) и соматическая (2); 3 - таламус, 4 - кора, 5,6 - таламофронтальная и таламопариетальная ассоциативные системы больших полушарий; светлыми линиями обозначены проекционные пути зрительной и соматической сенсорных систем; заштрихованы - ассоциативные системы; черными сплошными стрелками - кортико-кортикальные связи, пунктирными - эфферентные корковые проекции (преимущественно пирамидный тракт).
У грызунов, мозг которых близок к насекомоядным, слабая выраженность морфологической дифференциации и функциональной специализации полисенсорных структур определяет несовершенство интегративной деятельности мозга.
У хищных впервые появляются в коре больших полушарий развитые и относительно автономные лобные и теменные ассоциативные поля и соответствующие структуры таламуса. Характерны структурные и функциональные различия ассоциативных систем от других мозговых структур и между собой. Таламопариетальная система - следствие усложнения конструкции и связей зрительной сенсорной системы - участвует в сложных актах пространственной ориентировки и обеспечивает текущий сенсорный фон для выполнения целенаправленных поведенческих актов. Таламофронтальная система включается в своей значительной части в корковый отдел скелетно-мышечной сенсорной системы с одновременной проекцией на нее лимбических структур. Она участвует в организации программ целостных двигательных актов. В пределах отряда хищных лобные поля неокортекса усложняются, увеличиваются их размеры и роль в поведении, требующем мобилизации механизмов кратко- и долговременной памяти.
Перекрытие с зонами выхода эфферентных корковых путей, достаточная роль докоркового уровня интеграции, преобладание в каждой ассоциативной системе какого-либо одного из сенсорных входов не способствуют достижению полной гетеросенсорной интеграции.
У приматов ассоциативные структуры таламуса с их обширной и дифференцированной проекцией в лобные и теменные области коры образуют целостную интегративную систему больших полушарий. Это достигается прежде всего с помощью развитых кортико-кортикальных ассоциативных связей. Благодаря компактной системе миелинизированных пучков волокон возрастает роль кортикального уровня взаимодействия специфических сенсорных зон с ассоциативными полями. Последние характеризуются тонкой дифференциацией с формированием из нейронных элементов целостных структурно-функциональных ансамблей (модулей).
Функциональная значимость ассоциативных систем приматов расширяется и уточняется по сравнению с хищными. Утрачивается преобладание какого-либо одного сенсорного входа, а следовательно, расширяются возможности их интеграции. Возникает топографическая разнесенность ассоциативных полей от собственно эфферентных корковых формаций, что снижает удельное значение сенсомоторной интеграции и расширяет роль коры в осуществлении межсенсорного афферентного синтеза. Возникает все большая взаимозависимость ассоциативных систем в работе целостной интегративной системы полушарий, прежде всего в обеспечении процессов кратко- и долговременной памяти и формировании вероятностных программ поведения на основе доминирующей мотивации.
- 1.1. Общая физиология нервной системы
- 1.1.1. Основные типы строения нервной системы
- 1.1.2. Мембранные потенциалы нервных элементов
- 1.1.3. Потенциалы и трансмембранные токи при возбуждении
- 1 М и толщиной 1 мкм выражается огромной цифрой - 10 Ом. Подобное сопротивление имел бы кабель длиной 10 км.
- 1.1.5. Межклеточные пространства в нервной системе
- 1.1.6. Аксонный транспорт
- 1.1.7. Физиология синапсов
- 1.1.8. Нервные сети и основные законы их функционирования
- 1.1.9. Рефлексы и рефлекторные дуги
- 1.1.10. Элементы эволюции нервной системы
- 1.2. Общая физиология мышц
- 1.2.1. Структура и иннервация поперечнополосатых мышц позвоночных животных
- 1.2.2. Механизм мышечного возбуждения
- 1.2.3. Передача сигнала с плазмалеммы на сократительный аппарат миофибрилл
- 1.2.4. Структура саркомера и механизм сокращения мышечного волокна
- 1.2.5. Механика мышцы
- 1.2.6. Энергетика мышцы
- 1.2.7. Особенности мышцы сердца позвоночных животных
- 1.2.8. Общая физиология гладких мышц позвоночных животных
- 1.2.9. Характеристика некоторых мышц беспозвоночных животных
- 1.2.10. Элементы эволюции мышц
- 1.2.11. Электрические органы рыб
- 1.2.12. Немышечные формы двигательной активности
- 1.3. Физиология секреторной клетки
- 1.3.1. Поступление предшественников секрета в клетку
- 1.3.2. Выведение веществ из клетки
- 2.1. Совершенствование регуляторных механизмов в процессе эволюции
- 2.2. Характеристика гуморальных механизмов регуляции
- 2.2.1. Основные особенности эволюции гормональных регуляторных механизмов
- 2.2.2. Регуляция функций эндокринной системы
- 2.2.3. Функциональное значение гормонов
- 2.2.4. Механизм действия гормонов
- 2.2.5. Классификация гормонов
- 2.3. Единство нервных и гуморальных механизмов регуляции
- 2.3.1. Саморегуляция функций организма
- 2.3.2. Обратная связь как один из ведущих механизмов в регуляции функций организма
- 2.3.3. Рефлекторный принцип регуляции функций
- 2.4. Общие черты компенсаторно-приспособительных реакций организма
- 3.1.2. Нервная система позвоночных животных
- 3.2.2. Принцип общего конечного пути
- 3.2.3. Временная и пространственная суммация. Окклюзия
- 3.2.5. Принцип доминанты
- 3.3. Спинной мозг
- 3.3.1. Нейронные структуры и их свойства
- 3.3.2. Рефлекторная функция спинного мозга
- 3.3.3. Проводниковые функции спинного мозга
- 3.4.2. Рефлексы продолговатого мозга
- 3.4.3. Функции ретикулярной формации стволовой части мозга
- 3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- 3.7.2. Морфофункциональная организация таламуса
- 3.7.3. Гипоталамус
- 3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- 3.7.5. Терморегуляционная функция гипоталамуса
- 3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- 3.7.7. Гипоталамо-гипофизарная система
- 3.8.2. Функции лимбической системы
- 3.8.3. Роль лимбической системы в формировании эмоций
- 3.9. Базальные ядра и их функции
- 3.10.2. Проекционные зоны коры
- 3.10.3. Колончатая организация зон коры
- 3.11.2. Метод вызванных потенциалов
- 3.12. Закономерности эволюции коры больших полушарий
- 3.12.1. Происхождение новой коры
- 3.12.2. Организация новой коры у низших млекопитающих
- 3.12.3. Организация новой коры у высших млекопитающих
- 3.12.5. Развитие корковых межнейронных связей
- 3.13. Наследственно закрепленные формы поведения
- 3.13.1. Безусловные рефлексы.
- 3.13.2. Достижения этологов в исследовании врожденных форм поведения
- 3.14. Приобретенные формы поведения
- 3.14.1. Классификация форм научения
- 3) После исчезновения эти навыки самостоятельно не восстанавливаются.
- 3.14.2. Сон как форма приобретенного поведения
- 3.14.3. Закономерности условнорефлекторной деятельности
- 3.14.4. Торможение условных рефлексов
- 3.15.2. Механизмы условного торможения
- 3.16. Механизмы памяти
- 3.16.1. Кратковременная память
- 3.16.2. Долговременная память
- 3.17.2. Высшие интегративные системы мозга
- 3.17.4. Эволюция интегративной деятельности мозга
- 3.17.5. Онтогенез ассоциативных систем мозга
- 3.18. Функциональная структура поведенческого акта
- 3.18.1. Основные поведенческие доминанты
- 3) Описать структуру среды как закон связей между ее наиболее существенными переменными; 4) определить ведущее кинематическое звено для выполнения предстоящего двигательного акта.
- 3.18.2. Ассоциативные системы мозга и структура поведения
- 3.19.2. Сознание и неосознаваемое
- 3.20. Функциональная межполушарная асимметрия
- 3.21. Формирование высшей нервной деятельности ребенка
- 3.22. Мышление и речь
- 3.23. Сновидения, гипноз
- 3.24. Трудовая деятельность человека-оператора
- 3.25. Центральная регуляция движений
- 3.25.1. Управление ориентационными движениями и позой
- 3.25.2. Управление локомоцией
- 3.25.3. Организация манипуляторных движений
- 3.25.4. Корковая сенсомоторная интеграция
- 3.25.5. Программирование движений
- 3.25.6. Функциональная структура произвольного движения
- 3.26. Эмоции как компонент целостных поведенческих реакций
- 3.26.1. Биологическая роль эмоций
- 3.26.2. Эмоции и психическая деятельность
- 3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- 3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- 3.26.5. Эмоциогенные системы мозга
- 3.26.6. Влияние эмоциональных состояний на научение и память
- 3.26.7. Неврозы
- 3.27. Гематоэнцефалический барьер
- 4.1.2. Преобразование сигналов в рецепторах
- 4.1.3. Адаптация рецепторов
- 4.1.4. Сенсорные пути
- 4.1.5. Сенсорное кодирование
- 4.2. Соматическая сенсорная система
- 4.2.1. Соматическая сенсорная система беспозвоночных животных
- 4.2.2. Соматическая сенсорная система позвоночных животных
- 4.3. Скелетно-мышечная, или проприоцептивная, сенсорная система
- 4.3.1. Скелетно-мышечная сенсорная система беспозвоночных животных
- 4.3.2. Скелетно-мышечная сенсорная система позвоночных животных
- 4.4. Сенсорная система боковой линии
- 4.4.2. Электрорецепторы
- 4.4.3. Восходящие пути
- 4.5. Гравитационная сенсорная система
- 4.5.1. Гравитационная сенсорная система беспозвоночных животных
- 4.5.2. Гравитационная сенсорная система позвоночных животных
- 4.6. Слуховая сенсорная система
- 4.6.1. Физические характеристики звуковых сигналов
- 4.6.2. Слуховая сенсорная система беспозвоночных животных
- 4.6.3. Слуховая сенсорная система позвоночных животных
- 4.6.4. Эхолокация
- 4.7. Хеморецепторные сенсорные системы
- 4.7.1. Хеморецепторные сенсорные системы беспозвоночных животных
- 4.7.2. Хеморецепторные сенсорные системы позвоночных животных
- 4.8. Зрительная сенсорная система
- 4.8.1. Организация фоторецепторов
- 4.8.2. Механизмы фоторецепции
- 4.8.3. Зрительная сенсорная система беспозвоночных животных
- 4.8.4. Зрительная сенсорная система позвоночных животных
- 5.1. Дуга автономного рефлекса
- 5.1.1. Подразделение автономной нервной системы
- 5.1.2. Анатомические структуры
- 5.1.4. Различия в конструкции автономной и соматической нервной системы
- 5.1.5. Чувствительное звено дуги автономного рефлекса
- 5.1.6. Ассоциативное (вставочное) звено
- 5.1.7. Эфферентное звено
- 5.2. Синаптическая передача
- 5.2.1. Ацетилхолин
- 5.2.2. Норадреналин и адреналин
- 5.2.3. Трансдукторы
- 5.2.4. Серотонин
- 5.2.5. Аденозинтрифосфат (атф)
- 5.2.6. Вероятные кандидаты в медиаторы
- 5.2.7. Активные факторы
- 5.3.2. Аксон-рефлекс
- 5.3.3. Висцеросоматический рефлекс
- 5.3.4. Висцеросенсорный рефлекс
- 5.4. Влияние автономной нервной системы на деятельность эффекторных органов
- 5.4.1. Адаптационно-трофическая функция симпатической нервной системы
- 5.4.2. Роль парасимпатической нервной системы в регуляции висцеральных функций
- 5.4.3. Участие метасимпатической нервной системы в регуляции висцеральных функций
- 5.4.4. Тоническая активность
- 5.5.2. Стволовые центры
- 5.5.3. Гипоталамические центры
- 5.5.4. Лимбическая система
- 5.5.5. Мозжечок
- 5.5.6. Ретикулярная формация
- 5.5.7. Кора больших полушарий
- 6.1. Значение и место эндокринной регуляции в общей системе интеграционных механизмов
- 6.1.1. Методы изучения функций желез внутренней секреции
- 6.1.2. Понятие о нейросекреции
- 6.2.1. Гипоталамо-нейрогипофизарная система
- 6.2.2. Гипоталамо-аденогипофизарная система
- 6.2.3. Гипофиз
- 6.2.4. Шишковидное тело
- 6.3.2. Надпочечник и его гормоны
- 6.3.3. Гонады и половые гормоны
- 6.4.2. Гормональная регуляция водно-солевого гомеостаза
- 6.5. Поджелудочная железа и ее гормоны
- 6.6. Гормоны пищеварительного тракта
- 6.7. Гормоны сердечно-сосудистой системы
- 6.7.1. Гормоны сердца
- 6.7.2. Гормоны эндотелия
- 6.8. Гормоны плазмы и клеток крови
- 6.9. Гормонопоэз и основные механизмы трансдукции гормонального сигнала
- 6.10. Рецепторы гормонов
- 7.1. Эволюция внутренней среды организма
- 7.2. Основные механизмы поддержания постоянства внутренней среды организма. Понятие о гомеостазе
- 7.3. Понятие о системе крови
- 7.3.1. Основные функции крови
- 7.3.2. Объем и состав крови
- 7.3.3. Физико-химические свойства крови
- 7.4. Плазма крови
- 5 Г глобулина. Период полураспада альбумина составляет 10-15 сут глобулина - 5 сут.
- 7.5. Форменные элементы крови
- 7.5.1. Эритроциты
- 7.5.2. Пигменты крови
- 7.5.3.Скорость оседания эритроцитов (соэ)
- 7.5.4. Лейкоциты
- 7.5.5. Тромбоциты
- 7.6. Гемостаз (остановка кровотечения)
- 7.6.1. Свертывание крови
- 7.6.3. Противосвертывающие механизмы
- 7.7. Группы крови
- 7.7.2. Резус-фактор
- 7.8. Кроветворение и его регуляция
- 7.8.1. Эритропоэз
- 7.8.2. Лейкопоэз. Тромбоцитопоэз
- 7.9. Лимфа
- 8.1. Компоненты иммунной системы
- 8. 2. Механизмы неспецифического (врожденного) иммунитета
- 8.2.1. Фагоцитоз
- 8.2.2. Внеклеточное уничтожение (цитотоксичность)
- 8.2.3. Разрушение чужеродных клеток с помощью гуморальных механизмов
- 8.2.4. Роль острой воспалительной реакции в механизмах неспецифической резистентности организма
- 8.3. Механизмы специфического приобретенного иммунитета
- 8.3.1. Характеристика клеток, участвующих в реакциях специфического иммунитета
- 8.3.2. Иммуноглобулины, структура и роль в реализации специфического иммунного ответа
- 8.4.2. Участие цитокинов в регуляции иммунных реакций
- 8.4.4. Регуляторные иммунонейроэндокринные сети
- 9.2. Функции сердца
- 9.2.1. Общие принципы строения
- 9.2.2. Свойства сердечной мышцы
- 9.2.3. Механическая работа сердца
- 9.2.4. Тоны сердца
- 9.2.5. Основные показатели деятельности сердца
- 9.4. Регуляция работы сердца
- 9.4.1. Внутриклеточная регуляция
- 9.4.2. Межклеточная регуляция
- 9.4.3. Внутрисердечная нервная регуляция
- 9.4.4. Экстракардиальная нервная регуляция
- 9.4.5. Гуморальная регуляция
- 9.4.6. Тонус сердечных нервов
- 9.4.7. Гипоталамическая регуляция
- 9.4.8. Корковая регуляция
- 9.4.9. Рефлекторная регуляция
- 9.4.10. Эндокринная функция сердца
- 9.5. Сосудистая система
- 9.5.1. Эволюция сосудистой системы
- 9.5.2. Функциональные типы сосудов.
- 9.5.3. Основные законы гемодинамики
- 9.5.4. Давление в артериальном русле
- 9.5.5. Артериальный пульс
- 9.5.6. Капиллярный кровоток
- 9.5.7. Кровообращение в венах
- 9.6. Регуляция кровообращения
- 9.6.1. Местные механизмы регуляции кровообращения
- 9.6.2. Нейрогуморальная регуляция системного кровообращения
- 9.7. Кровяное депо
- 9.8.2. Мозговое кровообращение
- 9.8.3. Легочное кровообращение
- 9.8.4. Кровообращение в печени
- 9.8.5. Почечное кровообращение
- 9.8.6. Кровообращение в селезенке
- 9.9. Кровообращение плода
- 9.10.3. Состав, свойства, количество лимфы
- 9.10.4. Лимфообразование
- 9.10.5. Лимфоотток
- 10.1. Эволюция типов дыхания
- 10.1.1. Дыхание беспозвоночных животных
- 10.1.2. Дыхание позвоночных животных
- 10.2. Дыхательный акт и вентиляция легких
- 10.2.1. Дыхательные мышцы
- 10.2.2. Дыхательный акт
- 10.2.3. Вентиляция легких и внутрилегочный объем газов
- 10.2.4. Соотношение вентиляции и перфузии легких
- 10.2.5. Паттерны дыхания
- 10.3.1. Диффузия кислорода и углекислого газа через аэрогематический барьер
- 10.3.2. Транспорт кислорода кровью
- 10.3.3. Транспорт углекислого газа кровью
- 10.3.4. Транспорт кислорода и углекислого газа в тканях
- 10.4.2. Хеморецепторы и хеморецепторные стимулы дыхания
- 10.4.3. Механорецепторы дыхательной системы
- 10.4.4. Роль надмостовых структур
- 10.5.2. Влияние уровня бодрствования
- 10.5.3. Эмоциональные и стрессорные факторы
- 10.5.4. Мышечная деятельность
- 11.1. Источники энергии и пути ее превращения в организме
- 11.1.1. Единицы измерения энергии
- 11.1.3.Методы исследования обмена энергии
- 11.1.4. Основной обмен
- 11.1.5. Обмен в покое и при мышечной работе
- 11.1.7. Запасы энергии
- 11.2. Питание
- 11.2.1. Потребность в пище и рациональное питание
- 11.2.2. Потребность в воде
- 11.2.3. Потребность в минеральных веществах
- 11.2.4. Потребность в углеводах
- 11.2.5. Потребность в липидах
- 11.2.6. Потребность в белках
- 11.2.7. Потребность в витаминах
- 11.2.8. Потребность в пищевых волокнах
- 11.3. Терморегуляция
- 11.3.1. Пойкилотермия и гомойотермия
- 11.3.2. Температура тела
- 11.3.3. Терморецепция, субъективные температурные ощущения и дискомфорт
- 11.3.4. Центральные (мозговые) механизмы терморегуляции
- 11.3.5. Теплопродукция
- 11.3.6. Теплоотдача
- 11.3.9. Тепловая и холодовая адаптация
- 11.3.10. Сезонная спячка
- 11.3.11. Онтогенез терморегуляции
- 11.3.12. Лихорадка
- 12.1.2. Регуляторная часть пищеварительной системы
- 12.1.3. Интеграция нейромедиаторных и гормональных факторов в пищеварительной cистеме
- 12.1.4. Типы пищеварения
- 12.2. Секреторная функция
- 12.2.1. Слюнные железы
- 12.2.2. Железы желудка
- 12.2.3. Поджелудочная железа
- 12.2.4. Желчеотделение и желчевыделение
- 12.2.5. Секреция кишечных желез
- 12.3. Переваривание пищевых веществ
- 12.4. Мембранное пищеварение и всасывание
- 12.4.2. Всасывание
- 12.5. Моторная функция
- 12.5.1. Сопряжение возбуждения с сокращением в гладкомышечных клетках
- 12.5.2. Регуляция сократительной активности гладких мышц желудочно-кишечного тракта
- 12.5.3. Моторная функция различных отделов желудочно-кишечного тракта
- 12.5.4. Периодическая моторная деятельность желудочно-кишечного тракта
- 12.6.2. Насыщение
- 13.1. Водные фазы
- 13.2. Эволюция осморегуляции
- 13.3. Выделительные органы беспозвоночных животных различных типов
- 13.4. Почка позвоночных животных
- 13.5. Структура и функции почки млекопитающих
- 13.6.2. Клубочковая фильтрация
- 13.6.3. Реабсорбция в канальцах
- 13.6.5. Синтез веществ в почке
- 13.6.6. Осмотическое разведение и концентрирование мочи
- 13.6.7. Роль почек в осморегуляции и волюморегуляции
- 13.6.8. Механизм участия почек в регуляции кислотно-основного равновесия
- 13.6.9. Экскреторная функция почки
- 13.7. Нервная регуляция деятельности почки
- 13.8. Инкреторная функция почки
- 13.9. Метаболическая функция почки
- 13.10. Выделение мочи
- 14.2. Мужские половые органы
- 14.4. Половое созревание
- 14.5. Половое влечение
- 14.6. Половой акт
- 14.7. Половая жизнь
- 1) Парасимпатические из крестцового отдела (рефлекторные и психогенные влияния); 2) симпатические из пояснично-грудного отдела (психогенные влияния)
- 14.8.2. Половые рефлексы у женщин
- 14.9. Половой цикл
- 14.10. Оплодотворение
- 14.11. Беременность
- 14.11.1. Плацента
- 14.11.2. Плод
- 14.11.3. Состояние организма матери при беременности
- 14.11.4. Многоплодная беременность
- 14.11.5. Латентная стадия беременности
- 14.11.6. Беременность у животных
- 14.12. Роды
- 14.13.2. Физиология органов размножения самок
- 14.13.3. Инкубация
- 14.14. Лактация
- 15.2. Проявления старения
- 15.3. Профилактика старения