4.6.4. Эхолокация
Одной из важных характеристик деятельности слуховой системы человека и животных является пространственный слух, т. е. ориентация в пространстве благодаря восприятию звуковых сигналов. В процессе эволюции были выработаны определенные виды пространственного слуха, с большой точностью используемые животными и человеком при акустической ориентации в пространстве. Подавляющему большинству видов животных, в том числе и человеку, обладающих достаточно развитой слуховой системой, свойственна пространственная акустическая ориентация с помощью пассивной локации. Этот вид пространственного слуха характеризуется локацией источников звуков, излучаемых внешними объектами. Благодаря пассивной локации биологическим объектам удается локализовать положение звучащего объекта в вертикальной и горизонтальной плоскостях и его удаленность от тела. Однако кроме этого наиболее распространенного типа локации, существует и другой, очень своеобразный тип пространственного слуха, присущий лишь некоторым видам животных, - эхолокация.
Эхолокация состоит в определении пространственного положения какого-либо объекта благодаря отражению этим объектом звуковых сигналов, излучаемых самим животным-наблюдателем. Данные свидетельствуют о том, что животные, обладающие эхолокационным механизмом, способны не только определять пространственное положение объекта, но и опознавать с помощью эхолокации размеры, форму и материал объектов, от которых отражается издаваемый самим животным звуковой сигнал. Следовательно, эхолокационный механизм помимо чисто пространственных характеристик объекта предоставляет животному сведения о других его свойствах, весьма существенных при ориентировке во внешнем мире.
Достоверно известно, что эхолокацией среди животных пользуются все летучие мыши, представители одного рода крыланов, несколько видов стрижей-саланганов из Юго-Восточной Азии, один вид козодоевых - гуахаро из Венесуэлы, по-видимому, все представители зубатых китов и один вид из отряда ластоногих - калифорнийский морской лев. Из этого перечисления следует, что эхолокация как способ дистантной ориентации развилась независимо у разных представителей позвоночных животных, столь далеких друг от друга в филогенетическом и экологическом отношении, что любое сопоставление на первый взгляд может показаться искусственным и неправомочным. И тем не менее только при таком сопоставлении можно лучше понять причины возникновения этого особого акустического способа контактирования со средой.
Прежде всего следует обратить внимание на то, что все указанные представители по крайней мере часть своей активной жизни проводят в таких условиях где функции зрительного анализатора ограничены или полностью исключаются!
Стрижи-саланганы - дневные насекомоядные птицы, но гнездятся на высоких скалах подземных гротов, куда дневной свет практически не проникает. Гуахаро и крыланы - фруктоядные животные, дневку проводят также в глубоких подземельях и вылетают на кормежку с наступлением сумерек. Для большинства видов летучих мышей пещеры являются родным домом, где они отдыхают в светлое время суток, размножаются и переживают неблагоприятные погодные условия, впадая в спячку. Таким образом, жизненная необходимость обитания в глубоких подземельях с постоянным режимом температуры и влажности в течение всех сезонов года, представляющих, кроме того, надежное укрытие от многочисленных хищников, послужила тем решающим обстоятельством, которое заставило сухопутных животных искать новые средства дистантной ориентации в условиях подземного мира.
Животные заняли новую экологическую нишу, и если не принять это положение, то мы встаем в тупик перед вопросом: почему другие ночные животные например ближайшие родственники летучих мышей из подотряда крыланов проводящие дневку открыто на деревьях, другие представители отряда козодоевых, кроме гуахаро, или, наконец, совы не приняли участия в эксперименте Природы при развитии столь прогрессивного и несомненно удачного способа ориентации в темноте, а ограничились лишь совершенствованием зрения к ночному видению и некоторыми дополнительными приспособлениями к пассивной слуховой локации? По-видимому, для ночных полетов в условиях естественной освещенности этого вполне достаточно, но явно не хватает для беспрепятственного передвижения в абсолютной темноте извилистых подземелий
Относительно причин появления эхолокации у некоторых водных млекопитающих (зубатых китов и одного вида ластоногих), которые охотятся за рыбой в основном в дневное время суток, следует иметь в виду три обстоятельства. Во-первых, при прохождении в водную среду дневной свет подвергается Рассеиванию и даже в самой прозрачной воде видимость ограничивается лишь
Рис. 4.33 Функциональная эволюция сонорных систем у позвоночных
несколькими десятками метров, тогда как вблизи побережья морей, особенно в местах впадения рек, видимость сокращается до нескольких сантиметров. Во-вторых, боковое расположение глаз на голове китов и некоторых ластоногих препятствует хорошему обзору непосредственно впереди плывущего животного. В-третьих, распространение звука в воде на более далекие расстояния, чем свет, создает благоприятные условия для более эффективного использования поиска косяков рыбы и своевременного обнаружения подводных препятствий.
Таким образом, возникновение эхолокации у животных можно оценить как способ замещения в определенных условиях зрительной функции.
Следующий важный вывод, вытекающий из сопоставления современных жизненных форм эхолоцирующих животных, заключается в том, что использование активной акустической локации стало возможным и более эффективным только тогда, когда животные оторвались от земли и освоили воздушное пространство или перешли в водную среду. Быстрое передвижение в свободном трехмерном пространстве создало благоприятные условия для распространения акустических колебаний и получения отчетливых эхо от встречаемых на пути предметов.
Процесс совершенствования эхолокации как функции дистантной ориентации в биологических системах включает в себя несколько последовательных этапов (рис. 4.33).
У истоков ее возникновения может быть поставлено так называемое чувство препятствия, или непроизвольная эхолокация, обнаруживаемая у слепых людей. Она основана на том, что у слепого человека очень обострен слух. Поэтому он подсознательно воспринимает звуки, отражающиеся от предметов, которые сопутствуют его движению. При закрытых ушах или при наличии постороннего шума эта способность у слепых пропадает. Аналогичные результаты были получены на ослепленных белых крысах, которые после длительной тренировки могли обнаруживать препятствия акустическими средствами.
Следующий этап естественным образом вытекал из предыдущего - требовалось уже преднамеренно издать какой-либо акустический сигнал, чтобы он вернулся как эхо от объекта. Этот этап уже сознательного (человек) или рефлекторного (животное) озвучивания пространства, который основан на использовании первоначально коммуникационных сигналов, характеризует начало освоения оптически неблагоприятных условий для обитания. Такие эхолокационные системы можно назвать неспециализированными.
В дальнейшем функциональная эволюция шла в направлении создания уже специализированных сонаров (от англ. so(und) na(vigation) and r(anging) - звуковая навигация и определение дальности) с отбором образцов специальных сигналов, определенных частотных, временных и амплитудных характеристик, предназначенных для сугубо локационных целей и соответствующих перестроек в слуховой системе.
Среди существующих специализированных биосонаров самыми примитивными являются звуковые сонары пещерных птиц, представителей рода летучих собак из семейства крылановых и ушастых тюленей, которые могут служить примером конвергентного развития одной и той же функции одними и теми же средствами у совершенно различных представителей разных отрядов и даже классов позвоночных животных.
Все они используют в качестве локационных сигналов широкополосные щелчки, основная энергия которых у птиц сосредоточена в слышимом диапазоне частот 4-6 кГц, у морского льва 3-13 кГц, у летучих собак захватывает и низкие ультразвуки. Щелчки эти издаются наиболее простым механическим способом - прищелкивание клювом или языком. Звуковое частотное заполнение сигналов обусловливает низкую разрешающую способность их сонаров, которые, по-видимому, выполняют единственную функцию - обнаружение препятствия и оценку расстояния до него. В комплексе дистантных анализаторов эхолокация у этих животных играет лишь соподчиненную роль при хорошо развитой зрительной рецепции.
Наибольшего совершенства эхолокационная функция достигла у представителей подотрядов летучих мышей и зубатых китообразных. Качественное отличие их эхолокации от эхолокации птиц и крыланов заключается в использовании ультразвукового диапазона частот.
Малая длина волны ультразвуковых колебаний создает благоприятные условия для получения четких отражений даже от небольших предметов, которые волны слышимого диапазона огибают. Кроме того, ультразвук можно излучать узким, почти параллельным пучком, что позволяет концентрировать энергию в нужном направлении. В формировании локационных сигналов у летучих мышей и зубатых китов участвуют специализированные гортанные механизмы и система носовых мешков, а в качестве каналов для излучения ультразвука используются ротовая и носовая полости, а также специализированный лобный выступ - мелон.
Таким образом, возникновение эхолокации стало возможным лишь после освоения животными трехмерного пространства (воздушной или водной сред) в таких экологических условиях, где оптическими средствами было невозможно получить какую-либо информацию о наличии препятствий (пещеры - для наземных позвоночных, подводный мир - для китообразных и ластоногих).
В своем развитии биологические сонары прошли, по-видимому, длительный путь от непроизвольной эхолокации с использованием различных коммуникационных сигналов до совершенных ультразвуковых систем с образцами импульсов, предназначенных специально для зондирования пространства.
- 1.1. Общая физиология нервной системы
- 1.1.1. Основные типы строения нервной системы
- 1.1.2. Мембранные потенциалы нервных элементов
- 1.1.3. Потенциалы и трансмембранные токи при возбуждении
- 1 М и толщиной 1 мкм выражается огромной цифрой - 10 Ом. Подобное сопротивление имел бы кабель длиной 10 км.
- 1.1.5. Межклеточные пространства в нервной системе
- 1.1.6. Аксонный транспорт
- 1.1.7. Физиология синапсов
- 1.1.8. Нервные сети и основные законы их функционирования
- 1.1.9. Рефлексы и рефлекторные дуги
- 1.1.10. Элементы эволюции нервной системы
- 1.2. Общая физиология мышц
- 1.2.1. Структура и иннервация поперечнополосатых мышц позвоночных животных
- 1.2.2. Механизм мышечного возбуждения
- 1.2.3. Передача сигнала с плазмалеммы на сократительный аппарат миофибрилл
- 1.2.4. Структура саркомера и механизм сокращения мышечного волокна
- 1.2.5. Механика мышцы
- 1.2.6. Энергетика мышцы
- 1.2.7. Особенности мышцы сердца позвоночных животных
- 1.2.8. Общая физиология гладких мышц позвоночных животных
- 1.2.9. Характеристика некоторых мышц беспозвоночных животных
- 1.2.10. Элементы эволюции мышц
- 1.2.11. Электрические органы рыб
- 1.2.12. Немышечные формы двигательной активности
- 1.3. Физиология секреторной клетки
- 1.3.1. Поступление предшественников секрета в клетку
- 1.3.2. Выведение веществ из клетки
- 2.1. Совершенствование регуляторных механизмов в процессе эволюции
- 2.2. Характеристика гуморальных механизмов регуляции
- 2.2.1. Основные особенности эволюции гормональных регуляторных механизмов
- 2.2.2. Регуляция функций эндокринной системы
- 2.2.3. Функциональное значение гормонов
- 2.2.4. Механизм действия гормонов
- 2.2.5. Классификация гормонов
- 2.3. Единство нервных и гуморальных механизмов регуляции
- 2.3.1. Саморегуляция функций организма
- 2.3.2. Обратная связь как один из ведущих механизмов в регуляции функций организма
- 2.3.3. Рефлекторный принцип регуляции функций
- 2.4. Общие черты компенсаторно-приспособительных реакций организма
- 3.1.2. Нервная система позвоночных животных
- 3.2.2. Принцип общего конечного пути
- 3.2.3. Временная и пространственная суммация. Окклюзия
- 3.2.5. Принцип доминанты
- 3.3. Спинной мозг
- 3.3.1. Нейронные структуры и их свойства
- 3.3.2. Рефлекторная функция спинного мозга
- 3.3.3. Проводниковые функции спинного мозга
- 3.4.2. Рефлексы продолговатого мозга
- 3.4.3. Функции ретикулярной формации стволовой части мозга
- 3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- 3.7.2. Морфофункциональная организация таламуса
- 3.7.3. Гипоталамус
- 3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- 3.7.5. Терморегуляционная функция гипоталамуса
- 3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- 3.7.7. Гипоталамо-гипофизарная система
- 3.8.2. Функции лимбической системы
- 3.8.3. Роль лимбической системы в формировании эмоций
- 3.9. Базальные ядра и их функции
- 3.10.2. Проекционные зоны коры
- 3.10.3. Колончатая организация зон коры
- 3.11.2. Метод вызванных потенциалов
- 3.12. Закономерности эволюции коры больших полушарий
- 3.12.1. Происхождение новой коры
- 3.12.2. Организация новой коры у низших млекопитающих
- 3.12.3. Организация новой коры у высших млекопитающих
- 3.12.5. Развитие корковых межнейронных связей
- 3.13. Наследственно закрепленные формы поведения
- 3.13.1. Безусловные рефлексы.
- 3.13.2. Достижения этологов в исследовании врожденных форм поведения
- 3.14. Приобретенные формы поведения
- 3.14.1. Классификация форм научения
- 3) После исчезновения эти навыки самостоятельно не восстанавливаются.
- 3.14.2. Сон как форма приобретенного поведения
- 3.14.3. Закономерности условнорефлекторной деятельности
- 3.14.4. Торможение условных рефлексов
- 3.15.2. Механизмы условного торможения
- 3.16. Механизмы памяти
- 3.16.1. Кратковременная память
- 3.16.2. Долговременная память
- 3.17.2. Высшие интегративные системы мозга
- 3.17.4. Эволюция интегративной деятельности мозга
- 3.17.5. Онтогенез ассоциативных систем мозга
- 3.18. Функциональная структура поведенческого акта
- 3.18.1. Основные поведенческие доминанты
- 3) Описать структуру среды как закон связей между ее наиболее существенными переменными; 4) определить ведущее кинематическое звено для выполнения предстоящего двигательного акта.
- 3.18.2. Ассоциативные системы мозга и структура поведения
- 3.19.2. Сознание и неосознаваемое
- 3.20. Функциональная межполушарная асимметрия
- 3.21. Формирование высшей нервной деятельности ребенка
- 3.22. Мышление и речь
- 3.23. Сновидения, гипноз
- 3.24. Трудовая деятельность человека-оператора
- 3.25. Центральная регуляция движений
- 3.25.1. Управление ориентационными движениями и позой
- 3.25.2. Управление локомоцией
- 3.25.3. Организация манипуляторных движений
- 3.25.4. Корковая сенсомоторная интеграция
- 3.25.5. Программирование движений
- 3.25.6. Функциональная структура произвольного движения
- 3.26. Эмоции как компонент целостных поведенческих реакций
- 3.26.1. Биологическая роль эмоций
- 3.26.2. Эмоции и психическая деятельность
- 3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- 3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- 3.26.5. Эмоциогенные системы мозга
- 3.26.6. Влияние эмоциональных состояний на научение и память
- 3.26.7. Неврозы
- 3.27. Гематоэнцефалический барьер
- 4.1.2. Преобразование сигналов в рецепторах
- 4.1.3. Адаптация рецепторов
- 4.1.4. Сенсорные пути
- 4.1.5. Сенсорное кодирование
- 4.2. Соматическая сенсорная система
- 4.2.1. Соматическая сенсорная система беспозвоночных животных
- 4.2.2. Соматическая сенсорная система позвоночных животных
- 4.3. Скелетно-мышечная, или проприоцептивная, сенсорная система
- 4.3.1. Скелетно-мышечная сенсорная система беспозвоночных животных
- 4.3.2. Скелетно-мышечная сенсорная система позвоночных животных
- 4.4. Сенсорная система боковой линии
- 4.4.2. Электрорецепторы
- 4.4.3. Восходящие пути
- 4.5. Гравитационная сенсорная система
- 4.5.1. Гравитационная сенсорная система беспозвоночных животных
- 4.5.2. Гравитационная сенсорная система позвоночных животных
- 4.6. Слуховая сенсорная система
- 4.6.1. Физические характеристики звуковых сигналов
- 4.6.2. Слуховая сенсорная система беспозвоночных животных
- 4.6.3. Слуховая сенсорная система позвоночных животных
- 4.6.4. Эхолокация
- 4.7. Хеморецепторные сенсорные системы
- 4.7.1. Хеморецепторные сенсорные системы беспозвоночных животных
- 4.7.2. Хеморецепторные сенсорные системы позвоночных животных
- 4.8. Зрительная сенсорная система
- 4.8.1. Организация фоторецепторов
- 4.8.2. Механизмы фоторецепции
- 4.8.3. Зрительная сенсорная система беспозвоночных животных
- 4.8.4. Зрительная сенсорная система позвоночных животных
- 5.1. Дуга автономного рефлекса
- 5.1.1. Подразделение автономной нервной системы
- 5.1.2. Анатомические структуры
- 5.1.4. Различия в конструкции автономной и соматической нервной системы
- 5.1.5. Чувствительное звено дуги автономного рефлекса
- 5.1.6. Ассоциативное (вставочное) звено
- 5.1.7. Эфферентное звено
- 5.2. Синаптическая передача
- 5.2.1. Ацетилхолин
- 5.2.2. Норадреналин и адреналин
- 5.2.3. Трансдукторы
- 5.2.4. Серотонин
- 5.2.5. Аденозинтрифосфат (атф)
- 5.2.6. Вероятные кандидаты в медиаторы
- 5.2.7. Активные факторы
- 5.3.2. Аксон-рефлекс
- 5.3.3. Висцеросоматический рефлекс
- 5.3.4. Висцеросенсорный рефлекс
- 5.4. Влияние автономной нервной системы на деятельность эффекторных органов
- 5.4.1. Адаптационно-трофическая функция симпатической нервной системы
- 5.4.2. Роль парасимпатической нервной системы в регуляции висцеральных функций
- 5.4.3. Участие метасимпатической нервной системы в регуляции висцеральных функций
- 5.4.4. Тоническая активность
- 5.5.2. Стволовые центры
- 5.5.3. Гипоталамические центры
- 5.5.4. Лимбическая система
- 5.5.5. Мозжечок
- 5.5.6. Ретикулярная формация
- 5.5.7. Кора больших полушарий
- 6.1. Значение и место эндокринной регуляции в общей системе интеграционных механизмов
- 6.1.1. Методы изучения функций желез внутренней секреции
- 6.1.2. Понятие о нейросекреции
- 6.2.1. Гипоталамо-нейрогипофизарная система
- 6.2.2. Гипоталамо-аденогипофизарная система
- 6.2.3. Гипофиз
- 6.2.4. Шишковидное тело
- 6.3.2. Надпочечник и его гормоны
- 6.3.3. Гонады и половые гормоны
- 6.4.2. Гормональная регуляция водно-солевого гомеостаза
- 6.5. Поджелудочная железа и ее гормоны
- 6.6. Гормоны пищеварительного тракта
- 6.7. Гормоны сердечно-сосудистой системы
- 6.7.1. Гормоны сердца
- 6.7.2. Гормоны эндотелия
- 6.8. Гормоны плазмы и клеток крови
- 6.9. Гормонопоэз и основные механизмы трансдукции гормонального сигнала
- 6.10. Рецепторы гормонов
- 7.1. Эволюция внутренней среды организма
- 7.2. Основные механизмы поддержания постоянства внутренней среды организма. Понятие о гомеостазе
- 7.3. Понятие о системе крови
- 7.3.1. Основные функции крови
- 7.3.2. Объем и состав крови
- 7.3.3. Физико-химические свойства крови
- 7.4. Плазма крови
- 5 Г глобулина. Период полураспада альбумина составляет 10-15 сут глобулина - 5 сут.
- 7.5. Форменные элементы крови
- 7.5.1. Эритроциты
- 7.5.2. Пигменты крови
- 7.5.3.Скорость оседания эритроцитов (соэ)
- 7.5.4. Лейкоциты
- 7.5.5. Тромбоциты
- 7.6. Гемостаз (остановка кровотечения)
- 7.6.1. Свертывание крови
- 7.6.3. Противосвертывающие механизмы
- 7.7. Группы крови
- 7.7.2. Резус-фактор
- 7.8. Кроветворение и его регуляция
- 7.8.1. Эритропоэз
- 7.8.2. Лейкопоэз. Тромбоцитопоэз
- 7.9. Лимфа
- 8.1. Компоненты иммунной системы
- 8. 2. Механизмы неспецифического (врожденного) иммунитета
- 8.2.1. Фагоцитоз
- 8.2.2. Внеклеточное уничтожение (цитотоксичность)
- 8.2.3. Разрушение чужеродных клеток с помощью гуморальных механизмов
- 8.2.4. Роль острой воспалительной реакции в механизмах неспецифической резистентности организма
- 8.3. Механизмы специфического приобретенного иммунитета
- 8.3.1. Характеристика клеток, участвующих в реакциях специфического иммунитета
- 8.3.2. Иммуноглобулины, структура и роль в реализации специфического иммунного ответа
- 8.4.2. Участие цитокинов в регуляции иммунных реакций
- 8.4.4. Регуляторные иммунонейроэндокринные сети
- 9.2. Функции сердца
- 9.2.1. Общие принципы строения
- 9.2.2. Свойства сердечной мышцы
- 9.2.3. Механическая работа сердца
- 9.2.4. Тоны сердца
- 9.2.5. Основные показатели деятельности сердца
- 9.4. Регуляция работы сердца
- 9.4.1. Внутриклеточная регуляция
- 9.4.2. Межклеточная регуляция
- 9.4.3. Внутрисердечная нервная регуляция
- 9.4.4. Экстракардиальная нервная регуляция
- 9.4.5. Гуморальная регуляция
- 9.4.6. Тонус сердечных нервов
- 9.4.7. Гипоталамическая регуляция
- 9.4.8. Корковая регуляция
- 9.4.9. Рефлекторная регуляция
- 9.4.10. Эндокринная функция сердца
- 9.5. Сосудистая система
- 9.5.1. Эволюция сосудистой системы
- 9.5.2. Функциональные типы сосудов.
- 9.5.3. Основные законы гемодинамики
- 9.5.4. Давление в артериальном русле
- 9.5.5. Артериальный пульс
- 9.5.6. Капиллярный кровоток
- 9.5.7. Кровообращение в венах
- 9.6. Регуляция кровообращения
- 9.6.1. Местные механизмы регуляции кровообращения
- 9.6.2. Нейрогуморальная регуляция системного кровообращения
- 9.7. Кровяное депо
- 9.8.2. Мозговое кровообращение
- 9.8.3. Легочное кровообращение
- 9.8.4. Кровообращение в печени
- 9.8.5. Почечное кровообращение
- 9.8.6. Кровообращение в селезенке
- 9.9. Кровообращение плода
- 9.10.3. Состав, свойства, количество лимфы
- 9.10.4. Лимфообразование
- 9.10.5. Лимфоотток
- 10.1. Эволюция типов дыхания
- 10.1.1. Дыхание беспозвоночных животных
- 10.1.2. Дыхание позвоночных животных
- 10.2. Дыхательный акт и вентиляция легких
- 10.2.1. Дыхательные мышцы
- 10.2.2. Дыхательный акт
- 10.2.3. Вентиляция легких и внутрилегочный объем газов
- 10.2.4. Соотношение вентиляции и перфузии легких
- 10.2.5. Паттерны дыхания
- 10.3.1. Диффузия кислорода и углекислого газа через аэрогематический барьер
- 10.3.2. Транспорт кислорода кровью
- 10.3.3. Транспорт углекислого газа кровью
- 10.3.4. Транспорт кислорода и углекислого газа в тканях
- 10.4.2. Хеморецепторы и хеморецепторные стимулы дыхания
- 10.4.3. Механорецепторы дыхательной системы
- 10.4.4. Роль надмостовых структур
- 10.5.2. Влияние уровня бодрствования
- 10.5.3. Эмоциональные и стрессорные факторы
- 10.5.4. Мышечная деятельность
- 11.1. Источники энергии и пути ее превращения в организме
- 11.1.1. Единицы измерения энергии
- 11.1.3.Методы исследования обмена энергии
- 11.1.4. Основной обмен
- 11.1.5. Обмен в покое и при мышечной работе
- 11.1.7. Запасы энергии
- 11.2. Питание
- 11.2.1. Потребность в пище и рациональное питание
- 11.2.2. Потребность в воде
- 11.2.3. Потребность в минеральных веществах
- 11.2.4. Потребность в углеводах
- 11.2.5. Потребность в липидах
- 11.2.6. Потребность в белках
- 11.2.7. Потребность в витаминах
- 11.2.8. Потребность в пищевых волокнах
- 11.3. Терморегуляция
- 11.3.1. Пойкилотермия и гомойотермия
- 11.3.2. Температура тела
- 11.3.3. Терморецепция, субъективные температурные ощущения и дискомфорт
- 11.3.4. Центральные (мозговые) механизмы терморегуляции
- 11.3.5. Теплопродукция
- 11.3.6. Теплоотдача
- 11.3.9. Тепловая и холодовая адаптация
- 11.3.10. Сезонная спячка
- 11.3.11. Онтогенез терморегуляции
- 11.3.12. Лихорадка
- 12.1.2. Регуляторная часть пищеварительной системы
- 12.1.3. Интеграция нейромедиаторных и гормональных факторов в пищеварительной cистеме
- 12.1.4. Типы пищеварения
- 12.2. Секреторная функция
- 12.2.1. Слюнные железы
- 12.2.2. Железы желудка
- 12.2.3. Поджелудочная железа
- 12.2.4. Желчеотделение и желчевыделение
- 12.2.5. Секреция кишечных желез
- 12.3. Переваривание пищевых веществ
- 12.4. Мембранное пищеварение и всасывание
- 12.4.2. Всасывание
- 12.5. Моторная функция
- 12.5.1. Сопряжение возбуждения с сокращением в гладкомышечных клетках
- 12.5.2. Регуляция сократительной активности гладких мышц желудочно-кишечного тракта
- 12.5.3. Моторная функция различных отделов желудочно-кишечного тракта
- 12.5.4. Периодическая моторная деятельность желудочно-кишечного тракта
- 12.6.2. Насыщение
- 13.1. Водные фазы
- 13.2. Эволюция осморегуляции
- 13.3. Выделительные органы беспозвоночных животных различных типов
- 13.4. Почка позвоночных животных
- 13.5. Структура и функции почки млекопитающих
- 13.6.2. Клубочковая фильтрация
- 13.6.3. Реабсорбция в канальцах
- 13.6.5. Синтез веществ в почке
- 13.6.6. Осмотическое разведение и концентрирование мочи
- 13.6.7. Роль почек в осморегуляции и волюморегуляции
- 13.6.8. Механизм участия почек в регуляции кислотно-основного равновесия
- 13.6.9. Экскреторная функция почки
- 13.7. Нервная регуляция деятельности почки
- 13.8. Инкреторная функция почки
- 13.9. Метаболическая функция почки
- 13.10. Выделение мочи
- 14.2. Мужские половые органы
- 14.4. Половое созревание
- 14.5. Половое влечение
- 14.6. Половой акт
- 14.7. Половая жизнь
- 1) Парасимпатические из крестцового отдела (рефлекторные и психогенные влияния); 2) симпатические из пояснично-грудного отдела (психогенные влияния)
- 14.8.2. Половые рефлексы у женщин
- 14.9. Половой цикл
- 14.10. Оплодотворение
- 14.11. Беременность
- 14.11.1. Плацента
- 14.11.2. Плод
- 14.11.3. Состояние организма матери при беременности
- 14.11.4. Многоплодная беременность
- 14.11.5. Латентная стадия беременности
- 14.11.6. Беременность у животных
- 14.12. Роды
- 14.13.2. Физиология органов размножения самок
- 14.13.3. Инкубация
- 14.14. Лактация
- 15.2. Проявления старения
- 15.3. Профилактика старения