3) После исчезновения эти навыки самостоятельно не восстанавливаются.
Последнее свидетельствует о том, что исчезновение этих навыков есть процесс разрушения, а не временного торможения. Возникнув на ранних этапах эволюции живых существ, суммационная реакция у высших животных в преобразованном, а иногда и замаскированном виде проявляется как важнейший элемент более сложных форм индивидуального научения.
В противоположность суммационной реакции привыкание представляет собой такую форму научения, которая состоит в относительно устойчивом ослаблении реакции вследствие многократного предъявления раздражителя, не сопровождающегося каким-либо биологически значимым агентом (пищевым, оборонительным и пр.).
По-видимому, для низкоорганизованных животных суммационная реакция и кратковременное привыкание являются единственными механизмами приобретение индивидуального опыта. Привыкание совершенствуется в ходе эволюции и сохраняет за собой важную роль в репертуаре поведенческих адаптации. В определенном смысле привыкание - это подавление реакций, значимость которых невелика для поддержания жизнедеятельности. Привыкание возникает не в результате утомления или сенсорной адаптации, оно может быть кратко- и долговременным, что позволило использовать привыкание как модель для изучения разных видов памяти.
Наиболее распространенной формой привыкания в животном мире является ориентировочный рефлекс, который при повторении вызвавшего его раздражителя угашается в соответствии со всеми признаками привыкания. Основными факторами в развитии ориентировочного рефлекса являются новизна, неожиданность и значимость раздражителя для организма. В составе ориентировочной реакции выделяют два процесса: 1) начальную реакцию тревоги, удивления, сопровождающуюся повышением тонуса мышц и фиксированием позы (затаивание), генерализованным изменением электрической активности мозга (неспецифическая настройка), и 2) исследовательскую реакцию внимания -поворот головы, глаз, ориентация рецепторов по направлению к источнику раздражения. Она сопровождается локальными изменениями электрической активности мозга.
Ориентировочная реакция возникает не на сам стимул как таковой, а в результате сличения стимула со следовым процессом, оставленным в нервной системе предшествующими раздражителями. Если стимул и след совпадают, то ориентировочная реакция не возникает. Если же информация о стимуле и хранящиеся в памяти следы не совпадают, ориентировочная реакция возникает и оказывается тем интенсивнее, чем больше выражено такое рассогласование. Вероятно, конфигурация следов, оставленных в нервной системе в результате повторения каких-то раздражителей, фиксирует все их параметры.
Иными словами, нервная система путем комбинации своих элементов строит "нервную модель" стимула, динамика формирования которой и отражается в процессах угашения ориентировочного рефлекса.
Первые шаги в самостоятельной жизни молодого организма в решающей мере зависят от его контактов с матерью, которые осуществляют его выживание. Комплекс поведенческих адаптации новорожденного, которые образуют первичную связь между ним и родителями, как бы замыкает цепь преобразований эмбрионального периода, позволяя реализовать новорожденному уже сформированные механизмы восприятия и реагирования, именуют запечатлением (импринтингом). Детальная биологическая характеристика этого явления проведена К. Лоренцем, который сформулировал четыре основных особенности импринтинга: 1) импринтинг приурочен к ограниченному отрезку жизни, именуемому критическим, или чувствительным, периодом; 2) импринтинг необратим, т. е., возникнув в критический период, он не уничтожается последующим жизненным опытом; 3) импринтинг может происходить в тот период, когда соответствующее поведение еще не развито (например, половое); т. е. научение путем импринтирования не требует подкрепления; 4) при импринтинге запечатлеваются не индивидуальные, а видоспецифические характеристики жизненно важного объекта.
Типичный пример импринтинга: если утенок вылупляется в присутствии большого зеленого ящика, он будет следовать, за ним, двигающимся по проволоке, причем даже более охотно, чем за собственной матерью или другими птенцами. По-видимому, явления импринтинга служат примером взаимодействия индивидуального опыта и врожденных свойств молодого организма, что ведет к быстрой фиксации их в механизмах памяти.
В результате подражания (имитации) животное выполняет видотипичные действия путем непосредственного наблюдения за действием других животных своего вида. Особенно это характерно для молодых животных, которые путем имитации родительского поведения научаются различным проявлениям поведенческого репертуара своего вида.
Л. А. Орбели считал имитационное поведение главным охранителем вида, ибо громадное преимущество заключается в том, что "зрители", присутствующие при акте повреждения члена их же стада или их сообщества, вырабатывают рефлекторные защитные акты и таким образом могут в будущем избежать опасности.
Таким образом, облигатное, неассоциативное научение обеспечивает жизнедеятельность особи на первых этапах ее самостоятельного существования, а также закладывает основы видоспецифического характера поведения.
На более поздних этапах онтогенеза поведение все в большей мере приобретает активный характер. Расширяется спектр внешних факторов, способных приобретать сигнальное значение в зависимости от сочетания их с целостной биологической реакцией организма (ассоциативное, факультативное научение). Научение в этот период носит эффектзависимый характер, т. е. определяется результативностью контакта организма со средой.
Ассоциативное научение характеризуется совпадением во времени какого-либо индифферентного раздражителя с деятельностью организма. Биологический смысл такой ассоциации - условного рефлекса - в его сигнальности, т. е. в приобретении этим раздражителем роли предупреждающего фактора, сигнализирующего наступление последующих событий и подготавливающего организм к взаимодействию с ними. Ситуация выработки условных рефлексов, как бы имитирующих безусловнорефлекторную реакцию, наблюдалась в случае слюноотделительных или электрооборонительных рефлексов.
В последнем случае, например, посторонний раздражитель сочетали со слабым электроболевым стимулом, приводящим к отдергиванию конечности' у собаки. Спустя несколько сочетаний эта же реакция возникала и на условный сигнал. Такие условные рефлексы, благодаря которым достигается пассивная адаптация за счет существенного расширения сигналов к безусловнорефлекторной деятельности, называют условными рефлексами I типа, или классическими условными рефлексами. Животное при этом выступает в качестве пассивного участника событий, не имеющего возможности кардинально изменить их последовательность.
В самостоятельную форму объединяют условные рефлексы, которые строятся на основе активной целенаправленной деятельности животного. Теперь уже последовательность событий зависит не только от внешней сигнализации, но и от поведения животного. Например, крыса в экспериментальной камере случайно нажимает лапой на педаль, за что сразу вознаграждается пищей. А если еще перед нажатием на педаль включать посторонний раздражитель, устанавливается следующая цепная связь: сигнал > нажатие на педаль > пища.
Активный характер такого научения базируется на среднем звене - нажатии на педаль, от своевременности выполнения которого зависит успешность выполнения пищедобывательного поведенческого акта. Причем само нажатие на педаль не имеет никакой генетической связи с получением пищи. Такие условные рефлексы именуют инструментальными, или условными рефлексами II типа. Сюда же относят различные формы так называемого оперантного обучения, или дрессировки, обучения с помощью "проб и ошибок".
Высшие формы научения, свойственные в большей степени взрослым животным с развитой нервной системой, опираются на свойство формировать функциональную структуру окружающей среды в концептуальном плане, т. е. формировать целостный образ окружающей среды. Такие формы когнитивного научения основаны на извлечении законов связей между отдельными компонентами среды и базируются на двух предыдущих формах научения.
У высших позвоночных животных при первом же восприятии местоположения пищи создается образ или конкретное представление пищи и ее местоположения в данном пространстве. Этот образ сохраняется длительное время без повторного воспроизведения, и каждый раз, когда он репродуцируется при восприятии данной среды или какого-либо ее компонента, животное ведет себя точно так же, как и при непосредственном восприятии. Такое психонервное поведение, или поведение, направляемое образами, стали называть произвольным в отличие от условнорефлекторного, автоматизированного. При такой форме научения устанавливаются временные нервные связи между психонервным образом и двигательными центрами мозга. Образ, который лежит в основе субъективного отражения внешнего мира, - это вектор предстоящего рефлекторного поведения. Непосредственно активность образа реализуется через ориентировочную реакцию, которая регулирует направление поведения животного. Индивидуальное поведение, первично направляемое психонервным образом, при повторной тренировке автоматизируется и осуществляется по всем закономерностям условнорефлекторного научения.
В качестве самостоятельной формы поведения выделяют элементарную рассудочную деятельность животных, которая заключается в их способности улавливать простейшие эмпирические законы, связывающие предметы и явления окружающей среды, и в возможности оперировать этими законами при построении программ поведения в новых ситуациях. Элементарным проявлением рассудочной деятельности (разума) животных является способность к экстраполяции направления движения раздражителя. Животное, используя свою "систему отсчета", экстраполирует направление смещения кормушки с пищей, которая большую часть пути остается невидимой для животного. Таким путем животное использует предварительно воспринятую тактику поведения в среде для построения логики своего будущего поведения.
Предполагают, что в процессе отбора закрепляются те нейронные функциональные констелляции, которые обеспечивали наиболее быстрое решение биологически значимых задач. Происходит сличение уловленных в данный момент законов с теми, которые были познаны в предшествующей жизни. В результате осуществляется выбор наиболее адекватного пути решения задачи. К проявлениям рассудочной деятельности следует относить и так называемое инсайт-обучение (от англ. insight - проницательность, понимание, интуиция.)
Важнейшим результатом биологической эволюции в вероятностно организованной среде является способность к вероятностному прогнозированию. Под этим понимают предвосхищение будущего, основанное на вероятностной структуре прошлого опыта и информации о наличной ситуации. В соответствии с вероятностными гипотезами осуществляется подготовка к действиям в предстоящей ситуации, приводящим к наибольшей вероятности достижения цели.
Теория вероятностного обучения исходила из представлений о предсказании статистических закономерностей и выбора оптимальных стратегий поведения при обучении субъекта независимым вероятностям стохастично подаваемых раздражении. Степень информированности субъекта зависит от текущей субъективной вероятности достижения цели с учетом наличных средств и оценки проблемной ситуации. Высшие позвоночные и человек непрерывно опираются на вероятностное прогнозирование. Животные прогнозируют вероятность поиска пищевого объекта, чтобы не стать жертвой собственной "беспечности".
В целом вероятностное прогнозирование может иметь разные формы: 1) прогнозирование разных форм не зависимых от субъекта событий; 2) прогнозирование своих ответных активных действий; 3) прогнозирование целенаправленных действий не только в соответствии с их частотой в прошлом опыте, но и с их актуальной значимостью и предполагаемым результатом; 4) использование гипотез о наиболее вероятных действиях своих активных партнеров; 5) прогнозирование действий и целей с учетом собственных энергетических затрат.
Обучение вероятностному прогнозированию деятельности при широком репертуаре простых форм обучения представляет собой результат наиболее сложных мозговых процессов, связанных с работой высших интегративных систем мозга.
- 1.1. Общая физиология нервной системы
- 1.1.1. Основные типы строения нервной системы
- 1.1.2. Мембранные потенциалы нервных элементов
- 1.1.3. Потенциалы и трансмембранные токи при возбуждении
- 1 М и толщиной 1 мкм выражается огромной цифрой - 10 Ом. Подобное сопротивление имел бы кабель длиной 10 км.
- 1.1.5. Межклеточные пространства в нервной системе
- 1.1.6. Аксонный транспорт
- 1.1.7. Физиология синапсов
- 1.1.8. Нервные сети и основные законы их функционирования
- 1.1.9. Рефлексы и рефлекторные дуги
- 1.1.10. Элементы эволюции нервной системы
- 1.2. Общая физиология мышц
- 1.2.1. Структура и иннервация поперечнополосатых мышц позвоночных животных
- 1.2.2. Механизм мышечного возбуждения
- 1.2.3. Передача сигнала с плазмалеммы на сократительный аппарат миофибрилл
- 1.2.4. Структура саркомера и механизм сокращения мышечного волокна
- 1.2.5. Механика мышцы
- 1.2.6. Энергетика мышцы
- 1.2.7. Особенности мышцы сердца позвоночных животных
- 1.2.8. Общая физиология гладких мышц позвоночных животных
- 1.2.9. Характеристика некоторых мышц беспозвоночных животных
- 1.2.10. Элементы эволюции мышц
- 1.2.11. Электрические органы рыб
- 1.2.12. Немышечные формы двигательной активности
- 1.3. Физиология секреторной клетки
- 1.3.1. Поступление предшественников секрета в клетку
- 1.3.2. Выведение веществ из клетки
- 2.1. Совершенствование регуляторных механизмов в процессе эволюции
- 2.2. Характеристика гуморальных механизмов регуляции
- 2.2.1. Основные особенности эволюции гормональных регуляторных механизмов
- 2.2.2. Регуляция функций эндокринной системы
- 2.2.3. Функциональное значение гормонов
- 2.2.4. Механизм действия гормонов
- 2.2.5. Классификация гормонов
- 2.3. Единство нервных и гуморальных механизмов регуляции
- 2.3.1. Саморегуляция функций организма
- 2.3.2. Обратная связь как один из ведущих механизмов в регуляции функций организма
- 2.3.3. Рефлекторный принцип регуляции функций
- 2.4. Общие черты компенсаторно-приспособительных реакций организма
- 3.1.2. Нервная система позвоночных животных
- 3.2.2. Принцип общего конечного пути
- 3.2.3. Временная и пространственная суммация. Окклюзия
- 3.2.5. Принцип доминанты
- 3.3. Спинной мозг
- 3.3.1. Нейронные структуры и их свойства
- 3.3.2. Рефлекторная функция спинного мозга
- 3.3.3. Проводниковые функции спинного мозга
- 3.4.2. Рефлексы продолговатого мозга
- 3.4.3. Функции ретикулярной формации стволовой части мозга
- 3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- 3.7.2. Морфофункциональная организация таламуса
- 3.7.3. Гипоталамус
- 3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- 3.7.5. Терморегуляционная функция гипоталамуса
- 3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- 3.7.7. Гипоталамо-гипофизарная система
- 3.8.2. Функции лимбической системы
- 3.8.3. Роль лимбической системы в формировании эмоций
- 3.9. Базальные ядра и их функции
- 3.10.2. Проекционные зоны коры
- 3.10.3. Колончатая организация зон коры
- 3.11.2. Метод вызванных потенциалов
- 3.12. Закономерности эволюции коры больших полушарий
- 3.12.1. Происхождение новой коры
- 3.12.2. Организация новой коры у низших млекопитающих
- 3.12.3. Организация новой коры у высших млекопитающих
- 3.12.5. Развитие корковых межнейронных связей
- 3.13. Наследственно закрепленные формы поведения
- 3.13.1. Безусловные рефлексы.
- 3.13.2. Достижения этологов в исследовании врожденных форм поведения
- 3.14. Приобретенные формы поведения
- 3.14.1. Классификация форм научения
- 3) После исчезновения эти навыки самостоятельно не восстанавливаются.
- 3.14.2. Сон как форма приобретенного поведения
- 3.14.3. Закономерности условнорефлекторной деятельности
- 3.14.4. Торможение условных рефлексов
- 3.15.2. Механизмы условного торможения
- 3.16. Механизмы памяти
- 3.16.1. Кратковременная память
- 3.16.2. Долговременная память
- 3.17.2. Высшие интегративные системы мозга
- 3.17.4. Эволюция интегративной деятельности мозга
- 3.17.5. Онтогенез ассоциативных систем мозга
- 3.18. Функциональная структура поведенческого акта
- 3.18.1. Основные поведенческие доминанты
- 3) Описать структуру среды как закон связей между ее наиболее существенными переменными; 4) определить ведущее кинематическое звено для выполнения предстоящего двигательного акта.
- 3.18.2. Ассоциативные системы мозга и структура поведения
- 3.19.2. Сознание и неосознаваемое
- 3.20. Функциональная межполушарная асимметрия
- 3.21. Формирование высшей нервной деятельности ребенка
- 3.22. Мышление и речь
- 3.23. Сновидения, гипноз
- 3.24. Трудовая деятельность человека-оператора
- 3.25. Центральная регуляция движений
- 3.25.1. Управление ориентационными движениями и позой
- 3.25.2. Управление локомоцией
- 3.25.3. Организация манипуляторных движений
- 3.25.4. Корковая сенсомоторная интеграция
- 3.25.5. Программирование движений
- 3.25.6. Функциональная структура произвольного движения
- 3.26. Эмоции как компонент целостных поведенческих реакций
- 3.26.1. Биологическая роль эмоций
- 3.26.2. Эмоции и психическая деятельность
- 3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- 3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- 3.26.5. Эмоциогенные системы мозга
- 3.26.6. Влияние эмоциональных состояний на научение и память
- 3.26.7. Неврозы
- 3.27. Гематоэнцефалический барьер
- 4.1.2. Преобразование сигналов в рецепторах
- 4.1.3. Адаптация рецепторов
- 4.1.4. Сенсорные пути
- 4.1.5. Сенсорное кодирование
- 4.2. Соматическая сенсорная система
- 4.2.1. Соматическая сенсорная система беспозвоночных животных
- 4.2.2. Соматическая сенсорная система позвоночных животных
- 4.3. Скелетно-мышечная, или проприоцептивная, сенсорная система
- 4.3.1. Скелетно-мышечная сенсорная система беспозвоночных животных
- 4.3.2. Скелетно-мышечная сенсорная система позвоночных животных
- 4.4. Сенсорная система боковой линии
- 4.4.2. Электрорецепторы
- 4.4.3. Восходящие пути
- 4.5. Гравитационная сенсорная система
- 4.5.1. Гравитационная сенсорная система беспозвоночных животных
- 4.5.2. Гравитационная сенсорная система позвоночных животных
- 4.6. Слуховая сенсорная система
- 4.6.1. Физические характеристики звуковых сигналов
- 4.6.2. Слуховая сенсорная система беспозвоночных животных
- 4.6.3. Слуховая сенсорная система позвоночных животных
- 4.6.4. Эхолокация
- 4.7. Хеморецепторные сенсорные системы
- 4.7.1. Хеморецепторные сенсорные системы беспозвоночных животных
- 4.7.2. Хеморецепторные сенсорные системы позвоночных животных
- 4.8. Зрительная сенсорная система
- 4.8.1. Организация фоторецепторов
- 4.8.2. Механизмы фоторецепции
- 4.8.3. Зрительная сенсорная система беспозвоночных животных
- 4.8.4. Зрительная сенсорная система позвоночных животных
- 5.1. Дуга автономного рефлекса
- 5.1.1. Подразделение автономной нервной системы
- 5.1.2. Анатомические структуры
- 5.1.4. Различия в конструкции автономной и соматической нервной системы
- 5.1.5. Чувствительное звено дуги автономного рефлекса
- 5.1.6. Ассоциативное (вставочное) звено
- 5.1.7. Эфферентное звено
- 5.2. Синаптическая передача
- 5.2.1. Ацетилхолин
- 5.2.2. Норадреналин и адреналин
- 5.2.3. Трансдукторы
- 5.2.4. Серотонин
- 5.2.5. Аденозинтрифосфат (атф)
- 5.2.6. Вероятные кандидаты в медиаторы
- 5.2.7. Активные факторы
- 5.3.2. Аксон-рефлекс
- 5.3.3. Висцеросоматический рефлекс
- 5.3.4. Висцеросенсорный рефлекс
- 5.4. Влияние автономной нервной системы на деятельность эффекторных органов
- 5.4.1. Адаптационно-трофическая функция симпатической нервной системы
- 5.4.2. Роль парасимпатической нервной системы в регуляции висцеральных функций
- 5.4.3. Участие метасимпатической нервной системы в регуляции висцеральных функций
- 5.4.4. Тоническая активность
- 5.5.2. Стволовые центры
- 5.5.3. Гипоталамические центры
- 5.5.4. Лимбическая система
- 5.5.5. Мозжечок
- 5.5.6. Ретикулярная формация
- 5.5.7. Кора больших полушарий
- 6.1. Значение и место эндокринной регуляции в общей системе интеграционных механизмов
- 6.1.1. Методы изучения функций желез внутренней секреции
- 6.1.2. Понятие о нейросекреции
- 6.2.1. Гипоталамо-нейрогипофизарная система
- 6.2.2. Гипоталамо-аденогипофизарная система
- 6.2.3. Гипофиз
- 6.2.4. Шишковидное тело
- 6.3.2. Надпочечник и его гормоны
- 6.3.3. Гонады и половые гормоны
- 6.4.2. Гормональная регуляция водно-солевого гомеостаза
- 6.5. Поджелудочная железа и ее гормоны
- 6.6. Гормоны пищеварительного тракта
- 6.7. Гормоны сердечно-сосудистой системы
- 6.7.1. Гормоны сердца
- 6.7.2. Гормоны эндотелия
- 6.8. Гормоны плазмы и клеток крови
- 6.9. Гормонопоэз и основные механизмы трансдукции гормонального сигнала
- 6.10. Рецепторы гормонов
- 7.1. Эволюция внутренней среды организма
- 7.2. Основные механизмы поддержания постоянства внутренней среды организма. Понятие о гомеостазе
- 7.3. Понятие о системе крови
- 7.3.1. Основные функции крови
- 7.3.2. Объем и состав крови
- 7.3.3. Физико-химические свойства крови
- 7.4. Плазма крови
- 5 Г глобулина. Период полураспада альбумина составляет 10-15 сут глобулина - 5 сут.
- 7.5. Форменные элементы крови
- 7.5.1. Эритроциты
- 7.5.2. Пигменты крови
- 7.5.3.Скорость оседания эритроцитов (соэ)
- 7.5.4. Лейкоциты
- 7.5.5. Тромбоциты
- 7.6. Гемостаз (остановка кровотечения)
- 7.6.1. Свертывание крови
- 7.6.3. Противосвертывающие механизмы
- 7.7. Группы крови
- 7.7.2. Резус-фактор
- 7.8. Кроветворение и его регуляция
- 7.8.1. Эритропоэз
- 7.8.2. Лейкопоэз. Тромбоцитопоэз
- 7.9. Лимфа
- 8.1. Компоненты иммунной системы
- 8. 2. Механизмы неспецифического (врожденного) иммунитета
- 8.2.1. Фагоцитоз
- 8.2.2. Внеклеточное уничтожение (цитотоксичность)
- 8.2.3. Разрушение чужеродных клеток с помощью гуморальных механизмов
- 8.2.4. Роль острой воспалительной реакции в механизмах неспецифической резистентности организма
- 8.3. Механизмы специфического приобретенного иммунитета
- 8.3.1. Характеристика клеток, участвующих в реакциях специфического иммунитета
- 8.3.2. Иммуноглобулины, структура и роль в реализации специфического иммунного ответа
- 8.4.2. Участие цитокинов в регуляции иммунных реакций
- 8.4.4. Регуляторные иммунонейроэндокринные сети
- 9.2. Функции сердца
- 9.2.1. Общие принципы строения
- 9.2.2. Свойства сердечной мышцы
- 9.2.3. Механическая работа сердца
- 9.2.4. Тоны сердца
- 9.2.5. Основные показатели деятельности сердца
- 9.4. Регуляция работы сердца
- 9.4.1. Внутриклеточная регуляция
- 9.4.2. Межклеточная регуляция
- 9.4.3. Внутрисердечная нервная регуляция
- 9.4.4. Экстракардиальная нервная регуляция
- 9.4.5. Гуморальная регуляция
- 9.4.6. Тонус сердечных нервов
- 9.4.7. Гипоталамическая регуляция
- 9.4.8. Корковая регуляция
- 9.4.9. Рефлекторная регуляция
- 9.4.10. Эндокринная функция сердца
- 9.5. Сосудистая система
- 9.5.1. Эволюция сосудистой системы
- 9.5.2. Функциональные типы сосудов.
- 9.5.3. Основные законы гемодинамики
- 9.5.4. Давление в артериальном русле
- 9.5.5. Артериальный пульс
- 9.5.6. Капиллярный кровоток
- 9.5.7. Кровообращение в венах
- 9.6. Регуляция кровообращения
- 9.6.1. Местные механизмы регуляции кровообращения
- 9.6.2. Нейрогуморальная регуляция системного кровообращения
- 9.7. Кровяное депо
- 9.8.2. Мозговое кровообращение
- 9.8.3. Легочное кровообращение
- 9.8.4. Кровообращение в печени
- 9.8.5. Почечное кровообращение
- 9.8.6. Кровообращение в селезенке
- 9.9. Кровообращение плода
- 9.10.3. Состав, свойства, количество лимфы
- 9.10.4. Лимфообразование
- 9.10.5. Лимфоотток
- 10.1. Эволюция типов дыхания
- 10.1.1. Дыхание беспозвоночных животных
- 10.1.2. Дыхание позвоночных животных
- 10.2. Дыхательный акт и вентиляция легких
- 10.2.1. Дыхательные мышцы
- 10.2.2. Дыхательный акт
- 10.2.3. Вентиляция легких и внутрилегочный объем газов
- 10.2.4. Соотношение вентиляции и перфузии легких
- 10.2.5. Паттерны дыхания
- 10.3.1. Диффузия кислорода и углекислого газа через аэрогематический барьер
- 10.3.2. Транспорт кислорода кровью
- 10.3.3. Транспорт углекислого газа кровью
- 10.3.4. Транспорт кислорода и углекислого газа в тканях
- 10.4.2. Хеморецепторы и хеморецепторные стимулы дыхания
- 10.4.3. Механорецепторы дыхательной системы
- 10.4.4. Роль надмостовых структур
- 10.5.2. Влияние уровня бодрствования
- 10.5.3. Эмоциональные и стрессорные факторы
- 10.5.4. Мышечная деятельность
- 11.1. Источники энергии и пути ее превращения в организме
- 11.1.1. Единицы измерения энергии
- 11.1.3.Методы исследования обмена энергии
- 11.1.4. Основной обмен
- 11.1.5. Обмен в покое и при мышечной работе
- 11.1.7. Запасы энергии
- 11.2. Питание
- 11.2.1. Потребность в пище и рациональное питание
- 11.2.2. Потребность в воде
- 11.2.3. Потребность в минеральных веществах
- 11.2.4. Потребность в углеводах
- 11.2.5. Потребность в липидах
- 11.2.6. Потребность в белках
- 11.2.7. Потребность в витаминах
- 11.2.8. Потребность в пищевых волокнах
- 11.3. Терморегуляция
- 11.3.1. Пойкилотермия и гомойотермия
- 11.3.2. Температура тела
- 11.3.3. Терморецепция, субъективные температурные ощущения и дискомфорт
- 11.3.4. Центральные (мозговые) механизмы терморегуляции
- 11.3.5. Теплопродукция
- 11.3.6. Теплоотдача
- 11.3.9. Тепловая и холодовая адаптация
- 11.3.10. Сезонная спячка
- 11.3.11. Онтогенез терморегуляции
- 11.3.12. Лихорадка
- 12.1.2. Регуляторная часть пищеварительной системы
- 12.1.3. Интеграция нейромедиаторных и гормональных факторов в пищеварительной cистеме
- 12.1.4. Типы пищеварения
- 12.2. Секреторная функция
- 12.2.1. Слюнные железы
- 12.2.2. Железы желудка
- 12.2.3. Поджелудочная железа
- 12.2.4. Желчеотделение и желчевыделение
- 12.2.5. Секреция кишечных желез
- 12.3. Переваривание пищевых веществ
- 12.4. Мембранное пищеварение и всасывание
- 12.4.2. Всасывание
- 12.5. Моторная функция
- 12.5.1. Сопряжение возбуждения с сокращением в гладкомышечных клетках
- 12.5.2. Регуляция сократительной активности гладких мышц желудочно-кишечного тракта
- 12.5.3. Моторная функция различных отделов желудочно-кишечного тракта
- 12.5.4. Периодическая моторная деятельность желудочно-кишечного тракта
- 12.6.2. Насыщение
- 13.1. Водные фазы
- 13.2. Эволюция осморегуляции
- 13.3. Выделительные органы беспозвоночных животных различных типов
- 13.4. Почка позвоночных животных
- 13.5. Структура и функции почки млекопитающих
- 13.6.2. Клубочковая фильтрация
- 13.6.3. Реабсорбция в канальцах
- 13.6.5. Синтез веществ в почке
- 13.6.6. Осмотическое разведение и концентрирование мочи
- 13.6.7. Роль почек в осморегуляции и волюморегуляции
- 13.6.8. Механизм участия почек в регуляции кислотно-основного равновесия
- 13.6.9. Экскреторная функция почки
- 13.7. Нервная регуляция деятельности почки
- 13.8. Инкреторная функция почки
- 13.9. Метаболическая функция почки
- 13.10. Выделение мочи
- 14.2. Мужские половые органы
- 14.4. Половое созревание
- 14.5. Половое влечение
- 14.6. Половой акт
- 14.7. Половая жизнь
- 1) Парасимпатические из крестцового отдела (рефлекторные и психогенные влияния); 2) симпатические из пояснично-грудного отдела (психогенные влияния)
- 14.8.2. Половые рефлексы у женщин
- 14.9. Половой цикл
- 14.10. Оплодотворение
- 14.11. Беременность
- 14.11.1. Плацента
- 14.11.2. Плод
- 14.11.3. Состояние организма матери при беременности
- 14.11.4. Многоплодная беременность
- 14.11.5. Латентная стадия беременности
- 14.11.6. Беременность у животных
- 14.12. Роды
- 14.13.2. Физиология органов размножения самок
- 14.13.3. Инкубация
- 14.14. Лактация
- 15.2. Проявления старения
- 15.3. Профилактика старения