logo search
Учебник Ноздрачев

3.4.3. Функции ретикулярной формации стволовой части мозга

В ретикулярной формации продолговатого мозга сосредоточены центры, играющие важную роль в регуляции висцеральных функций. Это в первую очередь дыхательный центр, локализованный в медиальной части ретикулярной формации продолговатого мозга. Еще в прошлом столетии было установлено, что повреждение каудальной части дна IV желудочка приводит к остановке дыхания (укол Флуранса). Позднее Н. А. Миславский (1885) выделил в дыхательном центре две функционально различные части: инспираторную и экспираторную (или вдыхательную и выдыхательную). Использование методов микростимуляции и микроэлектродной регистрации активности одиночных нейронов позволило уточнить представления о локализации частей дыхательного центра.

Установлено, что инспираторная часть расположена более вентрально, чем экспираторная. Активность одиночных нейронов дыхательного центра может коррелировать с фазами дыхательного цикла. Этот признак позволяет выделить инспираторные нейроны, которые генерируют потенциалы действия в начальную фазу вдоха, и экспираторные нейроны, разряд которых приурочен к фазе выдоха. Наибольшее скопление инспираторных нейронов обнаружено около одиночного (солитарного) пути. В области двойного ядра локализованы инспираторные и экспираторные нейроны. Определенная мозаичность - в расположении дыхательных нейронов свидетельствует о том, что деление дыхательного центра на две части - вдыхательную и выдыхательную - более справедливо в функциональном смысле, чем в анатомическом (см. разд. 9.4.1).

Отличительной чертой нейронов дыхательного центра является способность к автоматизму. Даже при отсутствии афферентных воздействий активность этих нейронов характеризуется периодичностью, которая определяется спецификой ионных механизмов их клеточной мембраны. Периодичность разрядов дыхательных нейронов может быть обусловлена также наличием взаимных тормозных связей между инспираторными и экспираторными нейронами. Тормозные связи создают реципрокность разрядов дыхательных нейронов, когда появление активности инспираторных нейронов сопровождается торможением разрядов экспираторных и наоборот. В результате реципрокного взаимодействия дыхательных нейронов происходит смена фаз дыхательного цикла.

Вместе с тем смена фаз дыхательного цикла может осуществляться рефлекторно за счет афферентных влияний, которые модулируют дыхательную ритмику. При интенсивном вдохе и растяжении легочной ткани импульсы от механорецепторов легких по афферентным волокнам блуждающего нерва приходят в дыхательный центр и вызывают рефлекторное торможение инспираторных нейронов, одновременно возбуждая экспираторные (рефлекс Геринга-Брейера). Импульсы от экспираторных нейронов по ретикулярно-спинномозговому пути достигают исполнительных моторных центров спинного мозга и стимулируют начало выдоха.

Периодичность в работе дыхательного центра продолговатого мозга может обеспечиваться также за счет регулирующих влияний со стороны пневмотаксического центра. Этот центр находится в области моста и также состоит из двух типов нейронов - инспираторных и экспираторных, которые не имеют жесткой приуроченности своих разрядов к фазам дыхательного цикла. Пневмотаксический центр как регулятор периодически затормаживает инспираторную часть дыхательного центра и стимулирует экспираторные нейроны, осуществляя таким образом прекращение вдоха и начало выдоха.

В регуляции функций дыхательного центра могут принимать участие и более высокие этажи головного мозга. Так, например, эмоциональные реакции человека связаны с изменением периодичности в работе дыхательного центра, вызванным импульсацией промежуточного мозга и лимбической коры. Установлено, что электрическое раздражение орбитальной коры может вызвать полную остановку дыхания у человека. Регулирующие воздействия головного мозга обеспечивают произвольную регуляцию дыхания, его коррекцию при разнообразных изменениях жизнедеятельности.

Таким образом, регуляция дыхательной функции осуществляется иерархической системой нервных центров, расположенных на разных этажах нервной системы и связанных единством действия.

Другим жизненно важным центром ретикулярной формации продолговатого мозга является сосудодвигательный центр, локализация которого впервые была определена Ф. В. Овсянниковым (1871). Сосудодвигательный, или вазомоторный, центр занимает обширную область продолговатого мозга, простираясь в дорсолатеральном направлении от дна IV желудочка до пирамид (см. разд. 5.5.2). Перерезка спинного мозга на уровне шейных позвонков вызывает у спинальных животных резкое снижение сосудистого тонуса и нарушение регуляторных реакций, связанных с изменением просвета вен и артерий.

Локальная стимуляция ростральных частей сосудодвигательного центра вызывает увеличение сосудистого тонуса, повышение кровяного давления и тахикардию. Стимуляция каудального отдела сосудистого центра, напротив, вызывает расширение сосудов, падение кровяного давления и брадикардию.

Микроэлектродная регистрация электрической активности одиночных нейронов сосудистого центра  показала наличие нервных клеток, изменяющих свою фоновую активность синхронно с флуктуациями артериального давления. Среди них можно выделить нейроны, частота разрядов которых возрастает при повышении артериального давления, нейроны, частота фоновой активности которых, напротив, снижается при увеличении артериального давления, и, наконец, нейроны, частота импульсации которых меняется в соответствии с рабочим циклом сердца. Свойства нейронов сосудистого центра менее изучены, чем у нейронов дыхательного центра. Пока неясно, можно ли дифференцировать сосудодвигательные нейроны на "сосудосуживающие" и "сосудорасширяющие". Нерешенным остается также вопрос о наличии тормозного взаимодействия между нейронами сосудодвигательного центра.

Функциональная организация сосудодвигательного центра имеет определенную специфику в плане проекций его нисходящих путей. Эфферентные волокна от его нейронов спускаются в грудной отдел спинного мозга, но заканчиваются там не на мотонейронах, как в случае нисходящих систем дыхательного центра, а на преганглионарных нейронах симпатической нервной системы.

Таким образом, сосудистый тонус регулируется не антагонистическими нисходящими воздействиями, а только одной симпатической сосудосуживающей системой. Активное состояние этой системы вызывает вазоконстрикцию, а торможение - вазодилатацию (см. разд. 5.4, 8.6). Исключение из этого принципа составляют только некоторые сосуды, имеющие двойную иннервацию - симпатическую и парасимпатическую (сосуды половых органов и слюнных желез).

Рефлекторные влияния на нейроны сосудодвигательного центра осуществляются при возбуждении хемо- и механорецепторов, локализованных в сосудистой стенке. Афферентные волокна от этих рецепторов в составе блуждающего и языкоглоточного нервов достигают продолговатого мозга. Возбуждение механорецепторов дуги аорты, каротидного синуса при повышении артериального давления вызывает торможение активности сосудодвигательного центра и, как следствие, рефлекторное снижение сосудистого тонуса (рефлексы Людвига-Циона, Геринга, Бейнбриджа). Напротив, при повышении давления в системе полых вен наблюдается усиление активности сосудистого центра и вазоконстрикторный эффект. Тонус сосудистого центра может изменяться и При возбуждении хеморецепторов сосудистой стенки, возникающем при изменениях химического состава крови.

Следует отметить, что деятельность сосудодвигательного центра сочетается с функцией моторного ядра блуждающего нерва - двойного ядра, снижающего в норме частоту сердечных сокращений. В связи с этим при вазоконстрикторном эффекте одновременно увеличивается частота сердечных сокращений и, наоборот, при вазодилатации наблюдается замедление сердечной ритмики.

Для ретикулярной формации стволовой части мозга характерны не только вегетативные регулирующие функции, но и участие в нисходящем контроле деятельности двигательных центров спинного мозга.

В 1862 г. И. М. Сеченов установил угнетение спинальных рефлексов при раздражении стволовой части мозга. Это было открытием центрального торможения и одновременно открытием ретикулоспинальной системы. Однако механизм этого тормозного процесса удалось раскрыть только в 50-е гг. нашего столетия после работ американского нейрофизиолога Г. Мегуна, показавшего, что локальное электрическое раздражение гигантоклеточного ядра ретикулярной формации продолговатого мозга вызывает неспецифическое торможение сгибательных и разгибательных спинальных рефлексов. Эти неспецифические супраспинальные влияния по ретикулярно-спинномозговому пути достигают мотонейронов спинного мозга и увеличивают порог и скрытый период их ответов на рефлекторные воздействия. Дальнейшие исследования показали, что нисходящие влияния ретикулярной формации могут реализовываться не только за счет постсинаптического торможения мотонейронов, но и за счет возникновения длительных тормозных постсинаптических потенциалов в промежуточных нейронах, а также за счет воздействия ретикулоспинальных волокон на терминали афферентных волокон, входящих в спинной мозг.

Таким образом, ослабление рефлекторной деятельности достигается за счет прямого действия на мотонейроны и за счет определенного ослабления сенсорного входа в спинной мозг.

В ходе экспериментов с локальной стимуляцией ретикулярной формации выяснилось наличие зон, дающих эффект противоположной полярности, т. е. облегчающее влияние на спинномозговые рефлексы. Так, например, электрическое раздражение латеральных зон ретикулярной формации моста снижает порог и укорачивает скрытый период спинальных рефлексов. При стимуляции медиальных ядер ретикулярной формации заднего мозга в мотонейронах мышц-сгибателей кошки регистрируются коротколатентные возбуждающие постсинаптические потенциалы (ВПСП).

Данный факт свидетельствует о наличии (помимо диффузных неспецифических ретикулоспинальных проекций) моносинаптических нисходящих путей специфического действия, которые участвуют в нисходящем контроле деятельности спинного мозга.

Следовательно, ретикулярная формация как один из двигательных центров стволовой части мозга может выступать не только в роли регулятора возбудимости спинальных мотонейронов, но и принимать участие в процессах, связанных с поддержанием позы и организацией целенаправленных движений.

Благодаря работам Г. Мегуна и Дж. Моруцци наряду с неспецифическими нисходящими влияниями ретикулярной формации ствола были открыты ее восходящие, активирующие влияния на кору головного мозга. Если через хронически вживленные электроды раздражать центральные части ретикулярной формации ствола, то кошка, находящаяся в сонном состоянии, пробуждается и у нее появляется ориентировочная реакция. Эта поведенческая реакция пробуждения сопровождается характерными изменениями частотного спектра электроэнцефалограммы, переходом от регулярных, высоковольтных колебаний ?-ритма к низковольтным колебаниям. (?-ритма (см. разд. 3.11.1). Данная электроэнцефалографическая реакция получила название реакции десинхронизации. Она имеет генерализованный характер и регистрируется от обширных областей коры головного мозга.

В остром опыте перерезка стволовой части мозга на уровне среднего мозга и, таким образом, разрушение восходящих путей от ретикулярной формации ствола переводят животное в сноподобное коматозное состояние (спящий мозг, по Бремеру) с соответствующими изменениями характера электроэнцефалограммы.

Приведенные выше экспериментальные факты послужили основанием для заключения, что ретикулярная формация является структурой, отвечающей за состояние бодрствования, структурой, формирующей восходящую активирующую ретикулярную систему, которая поддерживает на определенном уровне возбудимость промежуточного мозга и коры больших полушарий. Согласно современным представлениям, переход коры к активному состоянию связан

 

Рис. 3.23 Афферентные и эфферентные связи ретикулярной формации стволовой части мозга

 

с колебаниями количества восходящих сигналов от ретикулярной формации ствола. Количество этих сигналов зависит от поступления в ретикулярную формацию сенсорных импульсов по коллатералям специфических афферентных восходящих путей. Практически к ретикулярной формации приходит информация от всех органов чувств по коллатералям от спинно-ретикулярного пути, проприоспинальных путей, афферентных черепных нервов, от таламуса и гипоталамуса, от моторных и сенсорных областей коры (рис. 3.23).

Микроэлектродная регистрация электрической активности нейронов ретикулярной формации показала, что большинство из них  являются полисенсорными, т. е. отвечают на раздражение различных модальностей (световых, звуковых, тактильных и т. д.). Ретикулярные нейроны имеют большие рецептивные поля, большой скрытый период и слабую воспроизводимость реакции. Эти свойства противоположны свойствам нейронов специфических ядер и позволяют отнести ретикулярные нейроны к категории неспецифических. Равным образом восходящие пути ретикулярной формации в отличие от классических специфических чувствительных проекций получили название неспецифических проекций.

Восходящие влияния ретикулярной формации высокочувствительны к действию различных фармакологических анестезирующих препаратов и так называемых успокаивающих средств (аминазин, серпазил, резерпин и др.).

Использование электрофизиологических и гистофлюоресцентных методов позволило установить медиаторную специфичность нейронов ретикулярной формации продолговатого мозга, моста и среднего мозга. Так, например, была изучена локализация монаминовых нейронов, которые начинают флюоресцировать после обработки микросрезов стволовой части мозга в парах формальдегида. Оказалось, что самая значительная группа адренергических клеток находится в одной из областей моста, называемой "голубоватое (место) пятно". Аксоны нейронов этой области проходят в среднем переднемозговом пучке и имеют терминальные окончания в различных отделах головного мозга: мозжечке, гипоталамусе, лимбической системе, коре больших полушарий.

Тела серотонинергических нейронов расположены преимущественно в срединной области мозгового ствола - в составе дорсального и медиального ядер шва продолговатого мозга, среднего мозга и моста. Восходящие аксоны этих нейронов идут в гипоталамус, базальные ганглии, лимбическую систему, кору больших полушарий.

В настоящее время накоплен значительный фактический материал, свидетельствующий о разнонаправленности влияний этих двух моноаминергических систем на возбудимость различных отделов головного мозга. Серотониновая система индуцирует сон и имеет непосредственное отношение к регуляции его медленноволновой фазы. Недостаток серотонина в мозгу вызывает вынужденное бодрствование. Катехоламиновая система голубоватого места, напротив стимулирует пробуждение и играет ведущую роль в регуляции парадоксальной фазы сна. При повреждении голубоватого пятна и, соответственно, недостатке норадреналина животные спят намного дольше, нежели обычно.

Реципрокность моноаминергических систем проявляется не только в процессах регуляции сна, но и в воздействии на эмоциональную сферу организма. Например, повышение концентрации мозгового норадреналина влечет за собой усиление стрессорного состояния животных, которое может быть снято (купировано) введением исходного продукта синтеза серотонина - 5-окситриптофана. Равным образом разрушение ядер шва, где синтезируется серотонин, усиливает агрессивность подопытных крыс.

Разнонаправленные влияния моноаминергических систем мозга имеют место и в отношении регуляции двигательной активности (серотониновая система ее снижает), и в процессах формирования сложных форм поведения (выработка условных рефлексов). Это свидетельствует о модулирующей функции данных систем, которые имеют обширные связи с различными отделами головного мозга.

Другие медиаторные системы в составе ретикулярной формации стволовой части мозга представлены холинергическими нейронами, а также сопутствующими им глицинергическими клетками, которые чаще всего выполняют функции тормозных интернейронов.

Следует отметить, что в составе восходящих путей ретикулярной формации имеются активирующие и дезактивирующие группы. По данным Дж. Моруцци, раздражение некоторых участков ретикулярной формации заднего мозга может вызвать у животного глубокий сон и появление ?-ритма в электроэнцефалограмме. Вероятно, реципрокный принцип организации восходящих и нисходящих проекций является общим для всей системы ретикулярной формации.

 

3.5. СРЕДНИЙ МОЗГ

Средний мозг расположен кпереди от мозжечка и моста в виде толстостенной массы, пронизанной узким центральным каналом (водопровод мозга), соединяющим полость III желудочка мозга (в промежуточном мозгу) с IV желудочком (в продолговатом мозгу). В процессе эмбрионального развития средний мозг формируется из среднего мозгового пузыря, боковые выпячивания которого перемещаются латерально и образуют сетчатку глаза, которая структурно и функционально представляет собой вынесенный на периферию нервный центр среднего мозга.

 

3.5.1. Морфофункциональная организация среднего мозга

На поперечном срезе (рис. 3.24) дорсальная поверхность среднего мозга занята пластинкой крыши, часто называемой пластинкой четверохолмия, или четверохолмием, состоящей из двух пар возвышений: верхних и нижних. Верхние холмики (двухолмие) играют роль зрительного подкоркового центра и служат местом переключения зрительных путей, идущих к латеральным коленчатым телам промежуточного мозга. У низших позвоночных (рыб и амфибий) ростральные (верхние) холмики достигают очень больших размеров и выполняют роль высшего зрительного центра, так как здесь заканчивается большая часть волокон зрительного тракта.

У птиц и рептилий в среднем мозгу от зрительных путей ответвляются немногочисленные коллатерали, идущие к латеральным коленчатым телам промежуточного мозга. Наконец, у млекопитающих большинство путей зрительного тракта заканчивается на нейронах коленчатых тел и только часть из них заходит в ростральные холмики.

 

 

 

Рис. 3.24 Средний мозг А - поперечный разрез; Б-продольный разрез; 1-5 - волокна: 1 - передние корково-мостовые, 2 - корково-ядерные, 3 - латеральные корково-спинномозговые, 4 - передние корково-спинномозговые, 5 - задние корково-мостовые, 6-водопровод среднего мозга, 7 - каудальный холмик, 8 - ретикулярная формация, 9 - медиальная петля, 10- латеральная петля, 11- черное  вещество, 12 - красное ядро.                                             

 

 

 

Нижние (каудальные) холмики (двухолмие) в процессе филогенетического развития формируются у наземных животных (рептилий и птиц) в связи с развитием органа слуха и служат местом переключения слуховых путей, а также афферентных волокон от вестибулярных рецепторов. Каудальные (нижние) холмики выполняют функцию подкоркового слухового центра.

Пластинка крыши и лежащие вентральное клеточные слои вплоть до водопровода среднего мозга формируют так называемую крышу среднего мозга, или тектальную область, которая обладает довольно сложной цитоархитектоникой. Большие нейроны веретенообразной формы расположены здесь слоями, общее число которых достигает 14. Ветвящиеся дендриты и мощные аксоны этих клеток ориентированы в вертикальной плоскости по отношению к поверхности мозга. Аксоны тектальных нейронов идут к ретикулярной формации, к двигательным ядрам стволовой части мозга и в спинной мозг, формируя покрышечно-спинномозговой путь. Таким образом, сама структура крыши среднего мозга создает предпосылку для его участия в анализе сенсорной информации и в регуляции движений.

Данные, полученные при регистрации импульсной активности тектальных нейронов, позволяют дифференцировать их на группы по способности реагировать на различные параметры сенсорных раздражении (смена света и темноты, перемещение светового источника). Эфферентные воздействия тектальных нейронов реализуются в форме ряда жизненно важных безусловных рефлексов. К числу таких рефлексов можно отнести сторожевой рефлекс при внезапной подаче светового или звукового раздражителей - рефлекс, вызывающий усиление тонуса мышц сгибателей. В пластинке крыши осуществляются замыкание ориентировочных, зрительных и слуховых рефлексов (поворот головы к источнику раздражения, рефлекторная установка на звук внешнего уха), оборонительных рефлексов. Все эти автоматические реакции относятся к категории генетически запрограммированных реакций организма, важных для сохранения вида.

В координации движений участвуют и другие структуры среднего мозга. нейтральнее водопровода среднего мозга в виде двух толстых валиков расположены ножки мозга, которые, расходясь кпереди, вступают в полушария конечного мозга. На поперечном срезе ножки мозга разделяются пигментированной прослойкой на две части: покрышку среднего мозга (тегментум) и основание ножек мозга.

Пигментированная прослойка состоит из нейронов, богатых пигментом меланином, и носит название черного вещества (Земмерринга). Это филогенетически древнее образование относится к экстрапирамидной системе регуляции двигательной активности и функционально связано с лежащими в основании полушарий переднего мозга базальными ядрами (ганглиями) - полосатым телом и бледным шаром (см. разд. 3.9).

В 60-е гг. нашего столетия было установлено, что нейроны черного вещества имеют дофаминергическую природу, т. е. способны синтезировать медиатор катехоламинового ряда - дофамин. Аксоны этих нейронов подходят к полосатому телу, также содержащему в значительном количестве дофамин. Дальнейшие исследования показали, что повреждение черного вещества, вызывающее дегенерацию дофаминергических путей к полосатому телу, связано с тяжелым неврологическим заболеванием - дрожательным параличом (болезнью Паркинсона).

Паркинсонизм проявляется в нарушении тонких содружественных движений, функций мимической мускулатуры и в появлении непроизвольных мышечных сокращений, или тремора. Этот болезненный синдром может быть снят при введении L-диоксифениланина - вещества, из которого синтезируется дофамин в организме. Таким образом, восполняя дефицит медиатора, стало возможно купировать неврологическое заболевание и вместе с тем привести фактические доказательства роли черного вещества среднего мозга в сенсомоторной координации движений.

В покрышке среднего мозга залегают различные функционально значимые ядра. Наиболее крупным из них является парное красное ядро (Штиллинга), представляющее собой удлиненное образование, которое расположено между черным веществом и окружающим водопровод среднего мозга центральным серым веществом. Красные ядра являются важным промежуточным центром проводящих путей стволовой части мозга. В них заканчиваются волокна экстрапирамидной системы, идущие от базальных ядер конечного мозга, а также волокна, идущие из мозжечка.

Аксоны крупноклеточной части красного ядра дают начало нисходящему красноядерно-спинномозговому пути (Монакова), заканчивающемуся на мотонейронах передних рогов спинного мозга. Этот тракт является конечным звеном древней экстрапирамидной системы, объединяющей влияния переднего мозга, мозжечка, вестибулярных ядер и координирующей работу двигательного аппарата.

Часть аксонов клеток, локализованных в красном ядре, заканчивается на нейронах ретикулярной формации среднего мозга. Она расположена несколько дорсальное красного ядра и представляет собой продолжение ретикулярной формации заднего мозга. Наряду с активирующей функцией, механизм которой разбирался в предыдущем разделе, ретикулярная формация среднего мозга играет важную роль в регуляции работы глазодвигательного аппарата.

В рефлекторной регуляции глазных движений принимают также участие двигательные ядра глазодвигательного (III пара) и блокового (IV пара) черепных нервов, расположенные в покрышке под дном водопровода среднего мозга. Кпереди от ядра глазодвигательного нерва лежит добавочное ядро глазодвигательного нерва (ядро Даркшевича), от которого начинается медиальный продольный пучок среднего мозга, связывающий между собой ядра глазодвигательного, блокового и находящегося в заднем мозгу отводящего нервов, образуя из них единую функциональную систему, регулирующую сочетанные движения глаз.

Под ядром глазодвигательного нерва лежит непарное вегетативное парасимпатическое ядро глазодвигательного нерва (Якубовича, или Вестфаля-Эдингера), нейроны которого посылают отростки в периферический ресничный ганглий (см. разд. 5.1.2). Постганглионарные нейроны ресничного ганглия иннервируют мышцы радужной оболочки, регулирующей диаметр зрачка, и мышцы ресничного тела, изменяющие кривизну хрусталика. Рефлекторные воздействия нейронов ресничного ганглия находятся в соответствии с деятельностью соматических глазодвигательных ядер. Как правило, кривизна хрусталика изменяется сопряженно с изменением угла сведения глазных осей.

Средний мозг является не только местом замыкания многих жизненно важных рефлексов, но и выполняет существенную проводниковую функцию. Отделенное от покрышки черным веществом основание ножек мозга состоит исключительно из нисходящих путей, соединяющих кору больших полушарий с мостом и спинным мозгом. В их числе находятся оба пирамидных тракта, по которым распространяются прямые влияния коры на мотонейроны спинного мозга.