logo search
Учебник Ноздрачев

10.3.4. Транспорт кислорода и углекислого газа в тканях

Кислород проникает из крови в клетки тканей путем диффузии, обусловленной разностью (градиентом) его парциальных давлений по обе стороны, так называемого гематопаренхиматозного барьера. Так, среднее Ро2 артериальной крови составляет около 100 мм рт. ст., а в клетках, где кислород непрерывно утилизируется (рис. 10.30), стремится к нулю. Было показано, что кислород диффундирует в ткани не только из капилляров, но частично из артериол. Гематопаренхиматозный барьер помимо эндотелия кровеносного сосуда и клеточной мембраны включает и разделяющую их межклеточную (тканевую) жидкость. Перемещение тканевой жидкости, конвективные токи в ней могут

 

Рис. 10.30 Химические реакции в эритроцитах при газообмене в тканях (слева) и легких (справа)

 

Рис. 10.31 "Каскады" парциальных давлений (напряжений) кислорода и углекислого газа в звеньях газотранспортной системы, организма

I - газовая среда, II - кровь; а - атмосфера, б - воздухоносные пути, в - легочные альвеолы, г - аэрогематический барьер, д - артерии, е - тканевые капилляры, ж - гематопаренхиматозный барьер, з - тканевая жидкость - клетки - митохондрии, и. - вены, к - легочные капилляры, л - артерии; цифрами обозначены капилляры почек (2), мышц (2), мозга (3) и сердца (4), где поглощение О2 и продукция СО2 идут наиболее интенсивно; сплошными линиями показан конвективный перенос газов, пунктирными - Диффузионный.

 

способствовать транспорту кислорода между сосудом и клетками. Ту же роль, как полагают, играют внутриклеточные цитоплазматические токи. И все же преобладающим механизмом переноса кислорода здесь служит диффузия, которая протекает тем интенсивнее, чем выше его потребление данной тканью.

Напряжение кислорода в тканях в среднем составляет 20-40 мм рт. ст. Однако эта величина в различных участках живой ткани отнюдь не одинакова. Наибольшее значение Ро2 фиксируется вблизи артериального конца кровеносного капилляра, наименьшая - в самой удаленной от капилляра точке ("мертвый угол").

Функция газотранспортной системы организма (рис. 10.31) в конечном счете направлена на поддержание парциального давления кислорода на клеточной мембране не ниже критического, т. е. минимального, необходимого для работы ферментов дыхательной цепи в митохондриях. Для клеток, интенсивно потребляющих кислород, критическое Ро2 составляет около 1 мм рт. ст. Отсюда следует, что доставка кислорода тканям должна гарантировать поддержание Роз не ниже критического в "мертвом углу". Это требование, как правило, выполняется.

Вместе с тем следует иметь в виду, что напряжение О2 в тканях зависит не только от снабжения кислородом, но и от его потребления клетками. Наиболее чувствительны к недостатку кислорода клетки мозга, где окислительные процессы очень интенсивны. Именно поэтому мероприятия по реанимации человека (в том числе включение искусственной, аппаратурной вентиляции легких а в качестве первой помощи - искусственное дыхание способом "рот в рот") приносят успех только в том случае, если они начаты не более чем через 4-5 мин после остановки дыхания; позже гибнут нейроны, прежде всего корковые. По той же причине погибают участки сердечной мышцы, лишившиеся доставки кислорода при инфаркте миокарда, т. е. при стойком нарушении кровоснабжения части сердечной мышцы.

В отличие от нервных клеток и клеток сердечной мышцы, скелетные мышцы относительно устойчивы к кратковременному прекращению кислородного снабжения. Они используют при этом в качестве источника энергии анаэробный гликолиз. Кроме того, мышцы (особенно "красные") более выносливы к длительной работе, располагают незначительным резервом кислорода, запасенного в миоглобине. Миоглобин представляет собой дыхательный пигмент, подобный гемоглобину. Однако его сродство с кислородом значительно выше (Р50 = 3-4 мм рт. ст.), поэтому он оксигенируется при относительно невысоком Ро2, зато отдает кислород при очень низком его напряжении в тканях.

Перенос CO2 из клеток тканей в кровь тоже происходит главным образом путем диффузии, т. е. в силу разности напряжений СО2 по обе стороны гемато-паренхиматозного барьера. Среднее артериальное значение Рсо2 в среднем составляет 40 мм рт. ст., а в клетках может достигать 60 мм рт. ст. Локальное парциальное давление углекислого газа и, следовательно, скорости его диффузионного транспорта в значительной мере определяются продукцией СО2 (т. е. интенсивностью окислительных процессов) в данном органе.

По той же причине Рсо2 и Ро2 в различных венах не одинаковы. Так, в крови, оттекающей от работающей мышцы, напряжение 02 гораздо ниже, а напряжение СО2 гораздо выше, чем, например, в крови, оттекающей от соединительной ткани. Поэтому для определения артериовенозной разницы, характеризующей суммарный обмен газов в организме, исследуют их содержание наряду с артериальной кровью (ее газовый состав практически одинаков в любой артерии) в смешанной венозной крови правого предсердия.

Рассматривая теперь все звенья газотранспортной системы в их совокупности (см. рис. 10.31), можно увидеть, что парциальные давления (напряжения) дыхательных газов образуют своего рода каскады, по которым поток 02 движется из атмосферы к тканям, а поток CO2 - в обратном направлении. На пути этих каскадов чередуются участки конвективного и диффузионного переноса.

 

10.4. МЕХАНИЗМЫ РЕГУЛЯЦИИ ДЫХАНИЯ

Координированные сокращения дыхательных мышц обеспечиваются ритмической активностью нейронов дыхательного центра. Такие нейроны сгруппированы в целом ряде структур мозгового ствола (см. разд. 3.4.2), поэтому в настоящее время термин дыхательный центр заменяют выражением центральный дыхательный механизм. Неотъемлемым звеном аппарата регуляции дыхания являются также хеморецепторные и механорецепторные системы, обеспечивающие нормальную работу центрального дыхательного механизма в соответствии с потребностями организма в обмене газов.

10.4.1. Центральный дыхательный механизм

Понятие о дыхательном центре появилось еще в XVIII в., когда было обнаружено прекращение дыхания у животных при разрушении ограниченной области продолговатого мозга. Однако современное представление о структуре и функции центрального дыхательного механизма сложилось лишь в последние десятилетия в результате использования электрофизиологических методов исследования, позволивших выявить определенные группы так называемых дыхательных нейронов.

К дыхательным нейронам относят нервные клетки, импульсная активность которых меняется в соответствии с фазами дыхательного цикла. Различают инспираторные нейроны, которые разряжаются в фазу вдоха, экспираторные, активные во время выдоха (рис. 10.32), и целый ряд нейронных популяций,

 

Рис. 10.32 Паттерны импульсной активности инспираторного (А) и экспираторного (Б) нейронов В - спирограмма; / - вдох, 77 - выдох.

 

Рис. 10.33 Расположение инспираторных (И) и экспираторных (Э) нейронов в продолговатом. мозгу кошки

Слева - дорсальная поверхность; справа - два поперечных среза {1, 2), на которых изображены области сосредоточения дыхательных нейронов, положение ядра одиночного пути (ЯОП) и двойного ядра (ДЯ). IX и Х - корешки языкоглоточного и блуждающего нервов; С1 - корешок первого шейного спинномозгового нерва.

 

активность которых или занимает часть определенной фазы дыхательного цикла (ранние, поздние), или включается в моменты перехода инспираторной фазы в экспираторную либо экспираторной в инспираторную.

Центральный дыхательный механизм входит в состав ретикулярной формации ствола мозга. Подавляющая масса дыхательных нейронов сосредоточена в двух группах ядер: дорсальной и вентральной (рис. 10.33). Большая часть нейронов дорсальной группы - инспираторные, бульбоспинальные. Их аксоны направляются в шейные сегменты спинного мозга и образуют синапсы с мотонейронами ядра диафрагмального нерва. Эти нейроны непосредственно управляют сокращением диафрагмы.

Ядра вентральной дыхательной группы содержат инспираторные и экспираторные нейроны. Последние связаны преимущественно с мотонейронами межреберных и брюшных мышц, расположенными в грудных и поясничных сегментах спинного мозга, частично с мотонейронами диафрагмы, обеспечивая дыхательную активность указанных мышц.

Активность центрального дыхательного механизма, в свою очередь, управляется стимулами, исходящими от хеморецепторов и механорецепторов дыхательной системы (о них речь пойдет ниже). Главная особенность работы этого механизма - линейное нарастание активности инспираторных нейронов на протяжении вдоха и резкий обрыв инспираторной активности, знаменующий окончание вдоха и переход к выдоху. Полагают, что этот обрыв осуществляется благодаря тормозному влиянию со стороны особой группы нейронов, возбуждение которых происходит одновременно с инспираторными и усиливается под влиянием афферентной импульсации от рецепторов растяжения легких.

Чем сильнее импульсация от хеморецепторов, тем круче нарастает инспираторная активность и быстрее развивается вдох, но так как при этом резче растягиваются легкие, то вдох быстрее сменяется выдохом. В итоге увеличивается и глубина, и частота дыхания.

Обнаружено, что полному расслаблению инспираторных мышц предшествует плавное снижение их активности, обусловленное, как полагают, включением особой группы нейронов, которые оказывают тормозящее ("запирающее") влияние на инспираторную и экспираторную активность. Эту фазу назвали постинспираторной. По-видимому, постинспираторная фаза обеспечивает интервалы, необходимые для опорожнения легких после очередного вдоха. Таким образом, центральный паттерн дыхания включает три фазы: инспираторную, постинспираторную и экспираторную.

Нейроны, связанные с регуляцией дыхания, имеются и в мосту. Здесь выделяют так называемый пневмотаксический центр, который участвует в переключении фаз дыхательного цикла; при разрушении этого центра вдохи становятся затянутыми, необычно глубокими.

Центральный дыхательный механизм продолговатого мозга обладает автоматизмом, т. е. постоянной ритмической активностью. Однако это его свойство у высших позвоночных полностью отлично от автоматии, свойственной, например, узлам проводящей системы сердца, возбуждение которых происходит в силу их внутренних свойств. Дыхательные нейроны функционируют нормально лишь при двух условиях. Первым условием является сохранность связей между их различными группами (хотя пока не установлено, какие именно нейроны являются водителями ритма, пейсмекерами, и существуют ли среди них такие пейсмекеры вообще), вторым условием - наличие афферентной стимуляции. В этом плане важнейшую роль играет импульсация, поступающая от хеморецепторов.