5.1.5. Чувствительное звено дуги автономного рефлекса
Рецепторы висцеральных органов (интероцепторы) по строению делятся на свободные и несвободные. Свободные окончания не окружены вспомогательными образованиями или специальными клетками. К их числу относят наиболее просто устроенные кустиковидные рецепторы, концевые структуры которых имеют вид петелек, колечек, пластинок, включающих скопление митохондрий и специфических пузырьков. Несвободные окончания имеют форму клубочков, покрытых снаружи капсулой, пластинчатых телец, у которых рецепторное окончание заключено в капсулу из нескольких слоев клеток и межклеточного вещества.
В процессе эволюционного развития происходит увеличение числа интероцепторов, постепенно усложняется их форма и, вероятно, также более узкой становится специализация. Сейчас у высших позвоночных обнаружены интероцепторы, способные воспринимать механические и химические стимулы.
Одиночные механорецепторы. разделяют на два типа: медленно и быстро адаптирующиеся. На стационарное непрерывное воздействие типа растяжения и сдавливания и те, и другие отвечают залпом разрядов, частота которых находится в прямой зависимости от скорости нарастания стимула и его амплитуды. Позже у медленно адаптирующихся интероцепторов частота следования импульсов снижается до некоторого постоянного уровня и, флуктуируя около среднего значения, может сохраняться часами, пока действует раздражитель. У быстро адаптирующихся интероцепторов возросшая в ответ на применение раздражителя активность вскоре затухает, а затем вовсе исчезает. Эти различия в поведении интероцепторов связаны с особенностями строения их структур.
Механорецепторы часто называют барорецепторами, хотя, строго говоря, это типичные механорецепторы, так как их возбуждение связано не с давлением, а с растяжением сосудистой или кишечной стенки, которое в конечном счете приводит к увеличению поверхности воспринимающей части мембраны.
Многочисленные попытки обнаружения субстрата химической чувствительности также завершились определением рецепторных структур, реагирующих на изменение химической среды.
В зависимости от типа реакции хеморецепторы разделяют на кислото- и щелочечувствительные. И те, и другие реагируют преимущественно на высокие концентрации веществ. Основным фактором, способным возбудить деятельность рецепторных структур, является исключительно рН растворов кислот и щелочей.
Интероцепторы располагаются в стенках практически всех висцеральных органов, таких как сосуды, сердце, легкие, почки, мочевой пузырь, печень и др.
Большинство артериальных рецепторов является медленно адаптирующимися. Их активность находится в прямой зависимости от уровня постоянного давления. Учащение импульсации в них происходит линейно, пока давление не достигает величины 140-180 мм рт. ст. (18,8-24,0 кПа). Наиболее отчетливо деятельность рецепторных единиц проявляется при нарастании давления в связи с сердечным циклом: в ответ на каждую систолу возникают пачки разрядов, исчезающих в период диастолы. У аортальных рецепторов систолическая вспышка отстает от второго зубца ЭКГ на 70-80 мс. При различных функциональных состояниях, болезнях сердца и сосудов работа рецепторов перестраивается. Сосудистые интероцепторы стимулируются и угнетаются определенными химическими веществами.
Среди рецепторов предсердий установлено наличие двух видов, отличающихся друг от друга характером генерации разрядов и ответами на изменение гемодинамики. В стенках желудочков также существует по меньшей мере два типа рецепторов: вентрикулярные и эпикардиальные. Особенностью первых является наличие раннего систолического залпа импульсов перед открытием аортальных клапанов.
Подъем давления в желудочке путем пережатия аорты или легочной артерии ведет к значительному увеличению разряда. В отличие от вентрикулярных рецепторы эпикарда не реагируют на подобные манипуляции, не действует на них и гипоксия. Их активность состоит из нерегулярных разрядов с частотой 1-5 имп/с без проявления сердечного ритма. Отдельные поля этих рецепторов составляют около 1 см2.
Рецепторы легких по локализации разделяются на рецепторы растяжения, связанные с гладкомышечными элементами стенок дыхательных путей, рецепторы слизистой оболочки и бронхов и рецепторы, расположенные вблизи капилляров альвеол (юкстакапиллярные).
Первые наделены, как правило, сугубо механорецепторными свойствами. Они реагируют только на растяжение легочной ткани и в соответствии с этим активируются лишь при вдохе. Рецепторы, лежащие более поверхностно, наряду с этим возбуждаются и химическими стимулами. Это так называемые ирритантные рецепторы. Их активность изменяется в связи с объемом легких реагируя на вдох и выдох, а также асфиксию, действие CO2 и раздражающих паров. Юкстакапиллярные рецепторы являются быстро адаптирующимися и мало способными к реактивации. Первоначально их обозначали как специфические рецепторы спадения.
Рецепторы почки и мочевого пузыря также подразделяются на быстро и медленно адаптирующиеся. Первые воспринимают колебания давления в мочевом пузыре. На наполнение органа и его опорожнение реагируют медленно адаптирующиеся структуры, что, вероятно, имеет значение для рефлекторной регуляции деятельности органа (см. разд. 13.14). Особый тип рецепторов описан в мочеиспускательном канале (уретре). Они способны возбуждаться исключительно током жидкости. Частота их разрядов находится в зависимости от скорости протекания мочи. Эти рецепторы локализуются в основном вблизи сфинктера мочеиспускательного канала.
В печени имеются различные популяции специфических рецепторов: волюмо-, осмо-, натрий- и калийчувствительные. Они имеют различное функциональное значение: участвуют в системной регуляции объема крови через орган и служат информационным звеном волюморегулирующего рефлекса.
Применяя дозированное воздействие на рецепторы, а также оценивая характер активности у голодных и сытых животных, удалось определить наличие и локализацию рецепторов в пищеводе, желудке, кишке, преджелудках жвачных. Большинство чувствительных окончаний пищевода относится к быстро адаптирующимся. Они активируются в момент перистальтического сокращения после глотания. В желудке этот вид рецепторов располагается в кардиальной части, на дне и в пилорической части. В тонкой кишке также имеется большое число участков, в которых удается регистрировать активность таких рецепторов. Их высокая плотность обнаружена в преджелудках жвачных животных. Рецепторные поля одиночных волокон большие, площадью до 4-5 см2. В них расположены высокочувствительные зоны, находящиеся преимущественно в центре поля. Их механическое раздражение сопровождается ответами с максимальной частотой разрядов.
Рецепторы слизистой оболочки реагируют на легкое статическое касание или длительное давление, на растяжение стенок желудка или кишки. Помимо этих в кишке обнаружена еще одна разновидность механорецепторов. Они возбуждаются только током жидкости в просвете кишки.
Последовательное удаление отдельных слоев желудочной стенки позволило установить, что спонтанно разряжающиеся рецепторы располагаются преимущественно в мышечном слое. В зависимости от пространственной ориентации - лежат ли они параллельно или поперек хода мышечных волокон - рецепторы могут работать либо как детекторы длины, либо как детекторы напряжения. Под серозной оболочкой тонкой кишки и в мышцах слизистой оболочки располагаются крайне быстро адаптирующиеся механорецепторы типа телец Фатера-Пачини. Величина рецептивного поля каждой такой единицы достигает 1 мм2.
В наиболее крупных симпатических ганглиях также находятся рецепторные окончания, способные возбуждаться в результате непосредственного действия раздражителя и косвенно - путем изменения уровня метаболизма.
Реакция рецептора на стимул составляет основу для всего последующего анализа сенсорных влияний, который выполняет нервная система. Именно от рецепторов зависят пределы чувствительности и диапазон воспринимаемых воздействий.
Чувствительные окончания по своим анатомическим и функциональным особенностям устроены так, что избирательно реагируют лишь на один определенный вид энергии. С другой стороны, стимул, каким бы он ни был по своей природе, - механическая деформация, химическое изменение, температурный сдвиг - всегда вызывает один и тот же электрический сигнал, который играет роль символа. Информация об интенсивности стимула во всех рецепторах передается частотой импульсов. Соотношение между интенсивностью стимула и частотой импульсации устанавливается в результате взаимодействия между стационарным генераторным током в дендритах чувствительной клетки и сдвигами проводимости во время потенциала действия. Немаловажно и то, что рецепторы не только воспринимают, но и усиливают воспринимаемый сигнал.
Нервные волокна, по которым висцеральная сенсорная информация передается в центры интеграции, подразделяются на группы А, Б, С. В отличие от метамерности, с которой в спинной мозг вступают соматические афференты, проводники висцеральной чувствительности имеют более сложное полисегментарное распределение, что создает условия для мультипликации их действия.
При вступлении в спинной мозг часть афферентных волокон первично связывается с сегментарными интернейронами, которые, в свою очередь, синаптически контактируют с промежуточными или эфферентными клетками того же или близлежащих сегментов. Так образуется дуга автономного рефлекса спинального уровня. Вторая часть афферентных волокон распределяется следующим образом: толстые миелинизированные волокна занимают более медиальное положение, немиелинизированные - латеральное. Восходящие ветви частично заканчиваются в сером веществе вышележащих сегментов, частично достигают дорсальной части продолговатого мозга, где и заканчиваются в ядрах дорсальных столбов. Здесь расположены вторые нейроны афферентного пути, аксоны которых формируют бульботаламический путь. Нисходящие ветви спускаются на 6-7 см и образуют синаптические контакты с ассоциативными клетками нижележащих сегментов.
- 1.1. Общая физиология нервной системы
- 1.1.1. Основные типы строения нервной системы
- 1.1.2. Мембранные потенциалы нервных элементов
- 1.1.3. Потенциалы и трансмембранные токи при возбуждении
- 1 М и толщиной 1 мкм выражается огромной цифрой - 10 Ом. Подобное сопротивление имел бы кабель длиной 10 км.
- 1.1.5. Межклеточные пространства в нервной системе
- 1.1.6. Аксонный транспорт
- 1.1.7. Физиология синапсов
- 1.1.8. Нервные сети и основные законы их функционирования
- 1.1.9. Рефлексы и рефлекторные дуги
- 1.1.10. Элементы эволюции нервной системы
- 1.2. Общая физиология мышц
- 1.2.1. Структура и иннервация поперечнополосатых мышц позвоночных животных
- 1.2.2. Механизм мышечного возбуждения
- 1.2.3. Передача сигнала с плазмалеммы на сократительный аппарат миофибрилл
- 1.2.4. Структура саркомера и механизм сокращения мышечного волокна
- 1.2.5. Механика мышцы
- 1.2.6. Энергетика мышцы
- 1.2.7. Особенности мышцы сердца позвоночных животных
- 1.2.8. Общая физиология гладких мышц позвоночных животных
- 1.2.9. Характеристика некоторых мышц беспозвоночных животных
- 1.2.10. Элементы эволюции мышц
- 1.2.11. Электрические органы рыб
- 1.2.12. Немышечные формы двигательной активности
- 1.3. Физиология секреторной клетки
- 1.3.1. Поступление предшественников секрета в клетку
- 1.3.2. Выведение веществ из клетки
- 2.1. Совершенствование регуляторных механизмов в процессе эволюции
- 2.2. Характеристика гуморальных механизмов регуляции
- 2.2.1. Основные особенности эволюции гормональных регуляторных механизмов
- 2.2.2. Регуляция функций эндокринной системы
- 2.2.3. Функциональное значение гормонов
- 2.2.4. Механизм действия гормонов
- 2.2.5. Классификация гормонов
- 2.3. Единство нервных и гуморальных механизмов регуляции
- 2.3.1. Саморегуляция функций организма
- 2.3.2. Обратная связь как один из ведущих механизмов в регуляции функций организма
- 2.3.3. Рефлекторный принцип регуляции функций
- 2.4. Общие черты компенсаторно-приспособительных реакций организма
- 3.1.2. Нервная система позвоночных животных
- 3.2.2. Принцип общего конечного пути
- 3.2.3. Временная и пространственная суммация. Окклюзия
- 3.2.5. Принцип доминанты
- 3.3. Спинной мозг
- 3.3.1. Нейронные структуры и их свойства
- 3.3.2. Рефлекторная функция спинного мозга
- 3.3.3. Проводниковые функции спинного мозга
- 3.4.2. Рефлексы продолговатого мозга
- 3.4.3. Функции ретикулярной формации стволовой части мозга
- 3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- 3.7.2. Морфофункциональная организация таламуса
- 3.7.3. Гипоталамус
- 3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- 3.7.5. Терморегуляционная функция гипоталамуса
- 3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- 3.7.7. Гипоталамо-гипофизарная система
- 3.8.2. Функции лимбической системы
- 3.8.3. Роль лимбической системы в формировании эмоций
- 3.9. Базальные ядра и их функции
- 3.10.2. Проекционные зоны коры
- 3.10.3. Колончатая организация зон коры
- 3.11.2. Метод вызванных потенциалов
- 3.12. Закономерности эволюции коры больших полушарий
- 3.12.1. Происхождение новой коры
- 3.12.2. Организация новой коры у низших млекопитающих
- 3.12.3. Организация новой коры у высших млекопитающих
- 3.12.5. Развитие корковых межнейронных связей
- 3.13. Наследственно закрепленные формы поведения
- 3.13.1. Безусловные рефлексы.
- 3.13.2. Достижения этологов в исследовании врожденных форм поведения
- 3.14. Приобретенные формы поведения
- 3.14.1. Классификация форм научения
- 3) После исчезновения эти навыки самостоятельно не восстанавливаются.
- 3.14.2. Сон как форма приобретенного поведения
- 3.14.3. Закономерности условнорефлекторной деятельности
- 3.14.4. Торможение условных рефлексов
- 3.15.2. Механизмы условного торможения
- 3.16. Механизмы памяти
- 3.16.1. Кратковременная память
- 3.16.2. Долговременная память
- 3.17.2. Высшие интегративные системы мозга
- 3.17.4. Эволюция интегративной деятельности мозга
- 3.17.5. Онтогенез ассоциативных систем мозга
- 3.18. Функциональная структура поведенческого акта
- 3.18.1. Основные поведенческие доминанты
- 3) Описать структуру среды как закон связей между ее наиболее существенными переменными; 4) определить ведущее кинематическое звено для выполнения предстоящего двигательного акта.
- 3.18.2. Ассоциативные системы мозга и структура поведения
- 3.19.2. Сознание и неосознаваемое
- 3.20. Функциональная межполушарная асимметрия
- 3.21. Формирование высшей нервной деятельности ребенка
- 3.22. Мышление и речь
- 3.23. Сновидения, гипноз
- 3.24. Трудовая деятельность человека-оператора
- 3.25. Центральная регуляция движений
- 3.25.1. Управление ориентационными движениями и позой
- 3.25.2. Управление локомоцией
- 3.25.3. Организация манипуляторных движений
- 3.25.4. Корковая сенсомоторная интеграция
- 3.25.5. Программирование движений
- 3.25.6. Функциональная структура произвольного движения
- 3.26. Эмоции как компонент целостных поведенческих реакций
- 3.26.1. Биологическая роль эмоций
- 3.26.2. Эмоции и психическая деятельность
- 3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- 3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- 3.26.5. Эмоциогенные системы мозга
- 3.26.6. Влияние эмоциональных состояний на научение и память
- 3.26.7. Неврозы
- 3.27. Гематоэнцефалический барьер
- 4.1.2. Преобразование сигналов в рецепторах
- 4.1.3. Адаптация рецепторов
- 4.1.4. Сенсорные пути
- 4.1.5. Сенсорное кодирование
- 4.2. Соматическая сенсорная система
- 4.2.1. Соматическая сенсорная система беспозвоночных животных
- 4.2.2. Соматическая сенсорная система позвоночных животных
- 4.3. Скелетно-мышечная, или проприоцептивная, сенсорная система
- 4.3.1. Скелетно-мышечная сенсорная система беспозвоночных животных
- 4.3.2. Скелетно-мышечная сенсорная система позвоночных животных
- 4.4. Сенсорная система боковой линии
- 4.4.2. Электрорецепторы
- 4.4.3. Восходящие пути
- 4.5. Гравитационная сенсорная система
- 4.5.1. Гравитационная сенсорная система беспозвоночных животных
- 4.5.2. Гравитационная сенсорная система позвоночных животных
- 4.6. Слуховая сенсорная система
- 4.6.1. Физические характеристики звуковых сигналов
- 4.6.2. Слуховая сенсорная система беспозвоночных животных
- 4.6.3. Слуховая сенсорная система позвоночных животных
- 4.6.4. Эхолокация
- 4.7. Хеморецепторные сенсорные системы
- 4.7.1. Хеморецепторные сенсорные системы беспозвоночных животных
- 4.7.2. Хеморецепторные сенсорные системы позвоночных животных
- 4.8. Зрительная сенсорная система
- 4.8.1. Организация фоторецепторов
- 4.8.2. Механизмы фоторецепции
- 4.8.3. Зрительная сенсорная система беспозвоночных животных
- 4.8.4. Зрительная сенсорная система позвоночных животных
- 5.1. Дуга автономного рефлекса
- 5.1.1. Подразделение автономной нервной системы
- 5.1.2. Анатомические структуры
- 5.1.4. Различия в конструкции автономной и соматической нервной системы
- 5.1.5. Чувствительное звено дуги автономного рефлекса
- 5.1.6. Ассоциативное (вставочное) звено
- 5.1.7. Эфферентное звено
- 5.2. Синаптическая передача
- 5.2.1. Ацетилхолин
- 5.2.2. Норадреналин и адреналин
- 5.2.3. Трансдукторы
- 5.2.4. Серотонин
- 5.2.5. Аденозинтрифосфат (атф)
- 5.2.6. Вероятные кандидаты в медиаторы
- 5.2.7. Активные факторы
- 5.3.2. Аксон-рефлекс
- 5.3.3. Висцеросоматический рефлекс
- 5.3.4. Висцеросенсорный рефлекс
- 5.4. Влияние автономной нервной системы на деятельность эффекторных органов
- 5.4.1. Адаптационно-трофическая функция симпатической нервной системы
- 5.4.2. Роль парасимпатической нервной системы в регуляции висцеральных функций
- 5.4.3. Участие метасимпатической нервной системы в регуляции висцеральных функций
- 5.4.4. Тоническая активность
- 5.5.2. Стволовые центры
- 5.5.3. Гипоталамические центры
- 5.5.4. Лимбическая система
- 5.5.5. Мозжечок
- 5.5.6. Ретикулярная формация
- 5.5.7. Кора больших полушарий
- 6.1. Значение и место эндокринной регуляции в общей системе интеграционных механизмов
- 6.1.1. Методы изучения функций желез внутренней секреции
- 6.1.2. Понятие о нейросекреции
- 6.2.1. Гипоталамо-нейрогипофизарная система
- 6.2.2. Гипоталамо-аденогипофизарная система
- 6.2.3. Гипофиз
- 6.2.4. Шишковидное тело
- 6.3.2. Надпочечник и его гормоны
- 6.3.3. Гонады и половые гормоны
- 6.4.2. Гормональная регуляция водно-солевого гомеостаза
- 6.5. Поджелудочная железа и ее гормоны
- 6.6. Гормоны пищеварительного тракта
- 6.7. Гормоны сердечно-сосудистой системы
- 6.7.1. Гормоны сердца
- 6.7.2. Гормоны эндотелия
- 6.8. Гормоны плазмы и клеток крови
- 6.9. Гормонопоэз и основные механизмы трансдукции гормонального сигнала
- 6.10. Рецепторы гормонов
- 7.1. Эволюция внутренней среды организма
- 7.2. Основные механизмы поддержания постоянства внутренней среды организма. Понятие о гомеостазе
- 7.3. Понятие о системе крови
- 7.3.1. Основные функции крови
- 7.3.2. Объем и состав крови
- 7.3.3. Физико-химические свойства крови
- 7.4. Плазма крови
- 5 Г глобулина. Период полураспада альбумина составляет 10-15 сут глобулина - 5 сут.
- 7.5. Форменные элементы крови
- 7.5.1. Эритроциты
- 7.5.2. Пигменты крови
- 7.5.3.Скорость оседания эритроцитов (соэ)
- 7.5.4. Лейкоциты
- 7.5.5. Тромбоциты
- 7.6. Гемостаз (остановка кровотечения)
- 7.6.1. Свертывание крови
- 7.6.3. Противосвертывающие механизмы
- 7.7. Группы крови
- 7.7.2. Резус-фактор
- 7.8. Кроветворение и его регуляция
- 7.8.1. Эритропоэз
- 7.8.2. Лейкопоэз. Тромбоцитопоэз
- 7.9. Лимфа
- 8.1. Компоненты иммунной системы
- 8. 2. Механизмы неспецифического (врожденного) иммунитета
- 8.2.1. Фагоцитоз
- 8.2.2. Внеклеточное уничтожение (цитотоксичность)
- 8.2.3. Разрушение чужеродных клеток с помощью гуморальных механизмов
- 8.2.4. Роль острой воспалительной реакции в механизмах неспецифической резистентности организма
- 8.3. Механизмы специфического приобретенного иммунитета
- 8.3.1. Характеристика клеток, участвующих в реакциях специфического иммунитета
- 8.3.2. Иммуноглобулины, структура и роль в реализации специфического иммунного ответа
- 8.4.2. Участие цитокинов в регуляции иммунных реакций
- 8.4.4. Регуляторные иммунонейроэндокринные сети
- 9.2. Функции сердца
- 9.2.1. Общие принципы строения
- 9.2.2. Свойства сердечной мышцы
- 9.2.3. Механическая работа сердца
- 9.2.4. Тоны сердца
- 9.2.5. Основные показатели деятельности сердца
- 9.4. Регуляция работы сердца
- 9.4.1. Внутриклеточная регуляция
- 9.4.2. Межклеточная регуляция
- 9.4.3. Внутрисердечная нервная регуляция
- 9.4.4. Экстракардиальная нервная регуляция
- 9.4.5. Гуморальная регуляция
- 9.4.6. Тонус сердечных нервов
- 9.4.7. Гипоталамическая регуляция
- 9.4.8. Корковая регуляция
- 9.4.9. Рефлекторная регуляция
- 9.4.10. Эндокринная функция сердца
- 9.5. Сосудистая система
- 9.5.1. Эволюция сосудистой системы
- 9.5.2. Функциональные типы сосудов.
- 9.5.3. Основные законы гемодинамики
- 9.5.4. Давление в артериальном русле
- 9.5.5. Артериальный пульс
- 9.5.6. Капиллярный кровоток
- 9.5.7. Кровообращение в венах
- 9.6. Регуляция кровообращения
- 9.6.1. Местные механизмы регуляции кровообращения
- 9.6.2. Нейрогуморальная регуляция системного кровообращения
- 9.7. Кровяное депо
- 9.8.2. Мозговое кровообращение
- 9.8.3. Легочное кровообращение
- 9.8.4. Кровообращение в печени
- 9.8.5. Почечное кровообращение
- 9.8.6. Кровообращение в селезенке
- 9.9. Кровообращение плода
- 9.10.3. Состав, свойства, количество лимфы
- 9.10.4. Лимфообразование
- 9.10.5. Лимфоотток
- 10.1. Эволюция типов дыхания
- 10.1.1. Дыхание беспозвоночных животных
- 10.1.2. Дыхание позвоночных животных
- 10.2. Дыхательный акт и вентиляция легких
- 10.2.1. Дыхательные мышцы
- 10.2.2. Дыхательный акт
- 10.2.3. Вентиляция легких и внутрилегочный объем газов
- 10.2.4. Соотношение вентиляции и перфузии легких
- 10.2.5. Паттерны дыхания
- 10.3.1. Диффузия кислорода и углекислого газа через аэрогематический барьер
- 10.3.2. Транспорт кислорода кровью
- 10.3.3. Транспорт углекислого газа кровью
- 10.3.4. Транспорт кислорода и углекислого газа в тканях
- 10.4.2. Хеморецепторы и хеморецепторные стимулы дыхания
- 10.4.3. Механорецепторы дыхательной системы
- 10.4.4. Роль надмостовых структур
- 10.5.2. Влияние уровня бодрствования
- 10.5.3. Эмоциональные и стрессорные факторы
- 10.5.4. Мышечная деятельность
- 11.1. Источники энергии и пути ее превращения в организме
- 11.1.1. Единицы измерения энергии
- 11.1.3.Методы исследования обмена энергии
- 11.1.4. Основной обмен
- 11.1.5. Обмен в покое и при мышечной работе
- 11.1.7. Запасы энергии
- 11.2. Питание
- 11.2.1. Потребность в пище и рациональное питание
- 11.2.2. Потребность в воде
- 11.2.3. Потребность в минеральных веществах
- 11.2.4. Потребность в углеводах
- 11.2.5. Потребность в липидах
- 11.2.6. Потребность в белках
- 11.2.7. Потребность в витаминах
- 11.2.8. Потребность в пищевых волокнах
- 11.3. Терморегуляция
- 11.3.1. Пойкилотермия и гомойотермия
- 11.3.2. Температура тела
- 11.3.3. Терморецепция, субъективные температурные ощущения и дискомфорт
- 11.3.4. Центральные (мозговые) механизмы терморегуляции
- 11.3.5. Теплопродукция
- 11.3.6. Теплоотдача
- 11.3.9. Тепловая и холодовая адаптация
- 11.3.10. Сезонная спячка
- 11.3.11. Онтогенез терморегуляции
- 11.3.12. Лихорадка
- 12.1.2. Регуляторная часть пищеварительной системы
- 12.1.3. Интеграция нейромедиаторных и гормональных факторов в пищеварительной cистеме
- 12.1.4. Типы пищеварения
- 12.2. Секреторная функция
- 12.2.1. Слюнные железы
- 12.2.2. Железы желудка
- 12.2.3. Поджелудочная железа
- 12.2.4. Желчеотделение и желчевыделение
- 12.2.5. Секреция кишечных желез
- 12.3. Переваривание пищевых веществ
- 12.4. Мембранное пищеварение и всасывание
- 12.4.2. Всасывание
- 12.5. Моторная функция
- 12.5.1. Сопряжение возбуждения с сокращением в гладкомышечных клетках
- 12.5.2. Регуляция сократительной активности гладких мышц желудочно-кишечного тракта
- 12.5.3. Моторная функция различных отделов желудочно-кишечного тракта
- 12.5.4. Периодическая моторная деятельность желудочно-кишечного тракта
- 12.6.2. Насыщение
- 13.1. Водные фазы
- 13.2. Эволюция осморегуляции
- 13.3. Выделительные органы беспозвоночных животных различных типов
- 13.4. Почка позвоночных животных
- 13.5. Структура и функции почки млекопитающих
- 13.6.2. Клубочковая фильтрация
- 13.6.3. Реабсорбция в канальцах
- 13.6.5. Синтез веществ в почке
- 13.6.6. Осмотическое разведение и концентрирование мочи
- 13.6.7. Роль почек в осморегуляции и волюморегуляции
- 13.6.8. Механизм участия почек в регуляции кислотно-основного равновесия
- 13.6.9. Экскреторная функция почки
- 13.7. Нервная регуляция деятельности почки
- 13.8. Инкреторная функция почки
- 13.9. Метаболическая функция почки
- 13.10. Выделение мочи
- 14.2. Мужские половые органы
- 14.4. Половое созревание
- 14.5. Половое влечение
- 14.6. Половой акт
- 14.7. Половая жизнь
- 1) Парасимпатические из крестцового отдела (рефлекторные и психогенные влияния); 2) симпатические из пояснично-грудного отдела (психогенные влияния)
- 14.8.2. Половые рефлексы у женщин
- 14.9. Половой цикл
- 14.10. Оплодотворение
- 14.11. Беременность
- 14.11.1. Плацента
- 14.11.2. Плод
- 14.11.3. Состояние организма матери при беременности
- 14.11.4. Многоплодная беременность
- 14.11.5. Латентная стадия беременности
- 14.11.6. Беременность у животных
- 14.12. Роды
- 14.13.2. Физиология органов размножения самок
- 14.13.3. Инкубация
- 14.14. Лактация
- 15.2. Проявления старения
- 15.3. Профилактика старения