5.1.2. Анатомические структуры
Симпатическая нервная система. Симпатическая нервная система по строению делится на центральную часть, расположенную в спинном мозгу, и периферическую, включающую многочисленные ветви и узлы.
Центральная часть представлена симпатическим ядром бокового рога серого вещества спинного мозга. Оно тянется от первых грудных до поясничных сегментов. Аксоны составляющих ядро клеток через межпозвоночные отверстия выходят из спинного мозга в составе вентральных корешков (см. рис. 5.1) и в виде белых соединительных ветвей вступают в узлы симпатического ствола. Ядро состоит из сравнительно мелких мультиполярных клеток, дендриты которых ветвятся здесь же, а тонкие и часто миелинизированные аксоны, называемые преганглионарными (предузловыми) волокнами, направляются в вентральные корешки и оканчиваются либо в паравертебральных (околопозвоночных), либо в превертебральных (предпозвоночных) ганглиях. Скорость проведения возбуждения в этих аксонах колеблется от 1 до 20 м/с.
Периферическая часть образована чувствительными и эфферентными нейронами симпатических ганглиев. В их анатомическом строении у высших позвоночных животных и человека принципиальных отличий не имеется.
Паравертебральные ганглии располагаются по обе стороны позвоночника, от основания черепа до крестца, в виде цепочек, называемых правым и левым пограничными симпатическими стволами. Узлы между собой соединены комиссурами, а со спинномозговыми нервами - белыми и серыми соединительными ветвями (рис. 5.2, 5.3).
По белой ветви в узел входит преганглионарное волокно, которое может переключаться здесь на эффекторный ганглионарный нейрон, тогда часть постганглионарных волокон по серой соединительной ветви вновь возвращается в спинномозговой нерв и далее следует в его составе без перерыва к эффекторному органу, например, к скелетной мышце или суставу. Другие волокна, собравшись в отдельные веточки, называемые внутренностными (чревными) нервами, направляются к органам грудной, брюшной и тазовой полости или к превертебральным ганглиям и через них далее также к исполнительным органам. Постганглионарные волокна в большинстве лишены миелиновой оболочки, поэтому имеют сероватую окраску. В ганглиях симпатического ствола прерывается только часть преганглионарных волокон, остальные проходят их транзитом и синаптически переключаются на эффекторный нейрон в превертебральных ганглиях.
Превертебральные ганглии расположены на значительном удалении от спинного мозга и вдали от иннервируемых органов, поэтому от них идут довольно длинные постганглионарные аксоны, совокупность которых в каждом случае носит название специального нерва. Исключение составляют небольшие узлы,
Рис. 5.3 Симпатический и метасимпатический отделы автономной нервной системы, (схема)
Преганглионарные симпатические волокна обозначены сплошными линиями, постганглионарные - пунктирными. Функциональные модули метасимпатической нервной системы (МНС) показаны встроенными непосредственно в стенки полых внутренних органов; местом локализации МНС являются интрамуральные ганглии.
находящиеся вместе с половыми органами и отдающие им короткие постганглионарные аксоны.
К числу наиболее крупных превертебральных ганглиев относятся чревный, краниальный и каудальный брыжеечные узлы. Два первых вместе с отходящими ветвями образуют самое крупное из автономных сплетений организма - чревное сплетение, традиционно называемое солнечным сплетением (рис. 5.2). От клеток этих узлов начинаются постганглионарные симпатические волокна, иннервирующие почти все органы брюшной полости. Они образуют многочисленные нервные стволы, которые отходят и распределяются радиально. Стволы направляются к органам брюшной полости и в свою очередь образуют ряд сплетений: печеночное, селезеночное, желудочное и др.
К эффекторам, снабжаемым постганглионарными симпатическими волокнами, относятся гладкие мышцы всех органов - сосудов, зрачка, волосяных луковиц, легких, органов пищеварения, выделения, потовые, слюнные, пищеварительные железы, а также клетки печени и жировой клетчатки.
Помимо эфферентных волокон симпатическая нервная система имеет собственные чувствительные пути. По локализации клеточных тел, ходу и длине отростков они могут быть разделены на две группы. Первая группа
Рис. 5.4 Парасимпатический и метасимпатический отделы автономной нервной системы, (схема)
Холинергические волокна, идущие из краниального и крестцового отделов ЦНС, направляются к ганглиям, органам и к функциональным модулям метасимпатической нервной системы, локализующейся в интрамуральных ганглиях стенок полых внутренних органов.
периферических афферентных нейронов включает клетки, тела которых локализуются в превертебральных симпатических ганглиях. Один из длинных отростков направляется на периферию, второй - в сторону спинного мозга, куда он вступает в составе дорсальных корешков (см. рис. 5.1). Вторая группа характеризуется тем" что длинный отросток этих чувствительных клеток идет к рабочему органу, короткие же распределяются в самом ганглии, синаптически контактируют с вставочными нейронами и через них с эффекторными нейронами, образуя здесь местную рефлекторную дугу.
Парасимпатическая нервная система. Общая организация парасимпатической нервной системы в какой-то мере подобна симпатической. В ней также выделяются центральные и периферические образования, передача возбуждения к исполнительному органу осуществляется в основном по двухнейронному пути, преганглионарный нейрон располагается в сером веществе мозга, постганглионарный вынесен далеко на периферию. Однако парасимпатическая нервная система отличается от симпатической рядом особенностей. Во-первых, ее центральные структуры расположены в трех различных далеко отстоящих участках мозга, отделенных не только друг от друга, но и от симпатического центра; во-вторых, парасимпатические волокна иннервируют, как правило, только определенные зоны тела, которые также снабжаются симпатической, а иные и метасимпатической иннервацией.
Центральные структуры парасимпатической нервной системы расположены в среднем, продолговатом мозгу и в крестцовом отделе спинного мозга (рис. 5.2, 5.4).
Среднемозговая часть представлена парасимпатическим ядром глазодвигательного нерва (ядром Якубовича, или Вестфаля-Эдингера), лежащим вблизи краниальных (верхних) холмиков на дне водопровода среднего мозга (сильвиевого). Преганглионарные волокна к глазным мышцам, железам и другим образованиям головы покидают ствол мозга в составе трех пар черепных нервов: III (глазодвигательного), VII (лицевого), IX (языкоглоточного) - и заканчиваются на эффекторных нейронах ресничного, ушного, крылонёбного, поднижнечелюстного (подъязычного) узлов. Отсюда постганглионарные волокна идут к иннервируемым органам.
Рис. 5.5 Иннервация каротидной и аортальной сосудистых зон
1 - желудочки, 2 - предсердия, 3 - восходящая аорта, 4 - барорецепторные области дуги аорты, 5 - сонный (каротидный) синус, 6 - языкоглоточные нервы, 7 - внутренняя сонная артерия, 8 - каротидные нервы, 9 - наружная сонная артерия, 10 - общая сонная артерия, 11 - главные стволы блуждающих нервов, 12 - парааортальные тельца, 13 - легочная артерия.
Клеточные тела преганглионарных нейронов продолговатого мозга посылают свои волокна к органам шеи, грудной и брюшной полости в составе Х пары (блуждающего нерва). Крестцовый отдел представлен центрами, располагающимися в боговых рогах трех крестцовых сегментов спинного мозга. Отсюда в составе тазового внутренностного нерва парасимпатические волокна направляются к органам таза.
Постганглионарные парасимпатические волокна снабжают глазные мышцы, слёзные и слюнные железы, мускулатуру и железы пищеварительного тракта, трахею, гортань, легкие, предсердия, выделительные и половые органы. В отличие от симпатических постганглионарных волокон они не иннервируют гладкие мышцы кровеносных сосудов, за исключением половых органов и, вероятно, артерий мозга.
Главным коллектором чувствительных путей парасимпатической нервной системы является блуждающий нерв. При общем количестве волокон его шейного отдела, достигающем, например, у кошки 30 тыс., 80-90% составляют афферентные волокна. Примерно 20% из этого числа приходится на долю миелинизированных волокон, остальные - тонкие безмякотные. Эти волокна передают информацию от пищеварительного тракта, органов грудной и брюшной полости. Образуемые этими волокнами рецепторы реагируют на механические, термические, болевые воздействия, воспринимают изменения рН и электролитного состава.
Исключительно важна физиологическая роль чувствительной ветви блуждающего нерва - депрессорного нерва (нерва, понижающего кровяное давление). Он является мощным проводником, сигнализирующим о функциональном состоянии сердца. Клеточные тела афферентных путей блуждающего нерва лежат в основном в яремном узле, а их волокна вступают в продолговатый мозг на уровне олив.
В синусной ветви (ветви сонного синуса), являющемся ветвью IX пары (языкоглоточного нерва), проходит около 300 толстых волокон, связанных с большим числом рецепторных приборов разной модальности. В этом воспринимающем комплексе особое значение принадлежит сонному гломусу (каротидному клубочку), лежащему между внутренней и наружной сонными артериями у места деления общей сонной артерии (рис. 5.5).
Метасимпатическая нервная система. Многие внутренние органы после перерезки симпатических и парасимпатических путей или даже после извлечения из организма продолжают осуществлять присущие им функции без особых видимых изменений. Сохраняет координированную перистальтическую и всасывательную функции кишка, сокращается перфузируемое сердце. Сегменты или полоски матки, мочеточника, жёлчного пузыря продолжают сокращаться с частотой и амплитудой, характерной для каждого органа. Эта функциональная автономия объясняется наличием в стенках этих органов ганглиозной системы, обладающей собственным автоматизмом и имеющей необходимые для автономной рефлекторной и интегративной деятельности звенья - чувствительное, вставочное, двигательное и медиаторы.
Следовательно, большинство полых висцеральных органов наряду с существованием экстраорганной симпатической и парасимпатической нервной системы имеет собственный базовый механизм нервной регуляции. Управление работой в этом случае обеспечивается рефлекторными дугами, замыкающимися в пределах стенки самих органов (рис. 5.6).
Наличие общих черт в структурной и функциональной организации, данные онто- и филогенеза, результаты наблюдений за конечными эффектами, возникающими при стимуляции нервных волокон, результаты прямой регистрации нейрональной активности явились основанием для выделения в составе автономной нервной системы кроме симпатической и парасимпатической еще и третьей части - метасимпатической.
Ранее к третьему отделу автономной нервной системы, называемому энтеральным, относили лишь рефлекторные дуги, замыкающиеся в подслизистом и межмышечном сплетениях кишки. Понятие метасимпатической нервной системы значительно шире, оно охватывает весь комплекс полых висцеральных органов, в том числе и пищеварительный тракт. Местом локализации метасимпатической нервной системы являются интрамуральные ганглии, залегающие в толще стенок этих органов.
Метасимпатическая нервная система обладает многими признаками, отличающими ее от других частей автономной нервной системы.
Рис. 5.6 Функциональный модуль метасимпатической нервной системы
1 - чувствительный нейрон, 2 - интернейрон, 3 - эфферентный нейрон, 4 - постганглионарный симпатический нейрон и его волокно, 5 - преганглионарный симпатический нейрон и его волокно, 6 - преганглионарный парасимпатический нейрон и его волокно.
1. Она иннервирует только внутренние органы, наделенные собственной моторной активностью; в сфере ее иннервации находятся гладкая мышца, всасывающий и секретирующий эпителий, локальный кровоток, местные эндокринные элементы, иммунные структуры.
2. Она получает синаптические входы от симпатической и парасимпатической систем и не имеет прямых синаптических контактов с эфферентной частью соматической рефлекторной дуги.
3. Наряду с общим висцеральным афферентным путем она имеет собственное сенсорное звено.
4. Она не находится в антагонистических отношениях с другими частями нервной системы.
5. Представляя истинно базовую иннервацию, она обладает гораздо большей, чем симпатическая и парасимпатическая нервная система, независимостью от ЦНС. -
6. Органы с разрушенными или с выключенными с помощью ганглиоблокаторов метасимпатическими путями утрачивают присущую им способность к координированной ритмической моторной и другим функциям.
7. Метасимпатическая нервная система имеет собственное медиаторное звено.
5.1.3. Элементы эволюции автономной нервной системы
У беспозвоночных (аннелид и др.) от соматической нервной системы отделяются нервные элементы, связанные с кишечной трубкой. Они образуются из клеток глоточных узлов и формируют самостоятельные ганглии. У членистоногих существует уже достаточно четко дифференцированная автономная нервная система с узлами и нервными стволами, идущими к мышцам желудка. У стрекозы, например, выделяют краниальный, туловищный и каудальный отделы. Туловищный соответствует симпатической, краниальный и каудальный - парасимпатической нервной системе позвоночных. У низших черепных животных сформированных автономных ганглиев не обнаруживается, хотя и имеются висцеральные ветви спинномозговых нервов.
У низкоорганизованных позвоночных, таких как миноги, акулы, скаты, по ходу симпатических сплетений, снабжающих пищеварительный канал и начинающихся от висцеральных ветвей спинномозговых нервов, возникают ганглиозные скопления клеток. Они располагаются дорсальное аорты соответственно каждой паре спинномозговых нервов. От ганглиев отходят ветви к внутренним органам и сердцу. В толще органов эти ветви формируют сплетения с заложенными в них ганглиозными клетками.
Таким образом, на этом этапе эволюции возникает третья часть автономной нервной системы - метасимпатическая.
В ряду костистых рыб образуется парный пограничный симпатический ствол со связями, характерными для высших позвоночных. Краниально он заходит в голову, каудально достигает хвоста. В дальнейшем в ходе эволюции строение автономной нервной системы усложняется, отличаясь разнообразием у разных групп.
Симпатический ствол рептилий, например, включает до 27 пар ганглиев с многочисленными связями, интрамуральные сплетения внутренних органов хорошо дифференцированы, хотя число клеток в узлах еще незначительно. У птиц преганглионарные волокна покидают спинной мозг в составе вентральных корешков.
По мере филогенетического развития усложняется и клеточный состав ганглиев. Если у низкоорганизованных позвоночных животных еще нет четких специфических различий между нервными клетками, то у более высокоорганизованных представителей класса рыб и особенно у млекопитающих имеется уже три их типа: рецепторные, эффекторные и ассоциативные.
- 1.1. Общая физиология нервной системы
- 1.1.1. Основные типы строения нервной системы
- 1.1.2. Мембранные потенциалы нервных элементов
- 1.1.3. Потенциалы и трансмембранные токи при возбуждении
- 1 М и толщиной 1 мкм выражается огромной цифрой - 10 Ом. Подобное сопротивление имел бы кабель длиной 10 км.
- 1.1.5. Межклеточные пространства в нервной системе
- 1.1.6. Аксонный транспорт
- 1.1.7. Физиология синапсов
- 1.1.8. Нервные сети и основные законы их функционирования
- 1.1.9. Рефлексы и рефлекторные дуги
- 1.1.10. Элементы эволюции нервной системы
- 1.2. Общая физиология мышц
- 1.2.1. Структура и иннервация поперечнополосатых мышц позвоночных животных
- 1.2.2. Механизм мышечного возбуждения
- 1.2.3. Передача сигнала с плазмалеммы на сократительный аппарат миофибрилл
- 1.2.4. Структура саркомера и механизм сокращения мышечного волокна
- 1.2.5. Механика мышцы
- 1.2.6. Энергетика мышцы
- 1.2.7. Особенности мышцы сердца позвоночных животных
- 1.2.8. Общая физиология гладких мышц позвоночных животных
- 1.2.9. Характеристика некоторых мышц беспозвоночных животных
- 1.2.10. Элементы эволюции мышц
- 1.2.11. Электрические органы рыб
- 1.2.12. Немышечные формы двигательной активности
- 1.3. Физиология секреторной клетки
- 1.3.1. Поступление предшественников секрета в клетку
- 1.3.2. Выведение веществ из клетки
- 2.1. Совершенствование регуляторных механизмов в процессе эволюции
- 2.2. Характеристика гуморальных механизмов регуляции
- 2.2.1. Основные особенности эволюции гормональных регуляторных механизмов
- 2.2.2. Регуляция функций эндокринной системы
- 2.2.3. Функциональное значение гормонов
- 2.2.4. Механизм действия гормонов
- 2.2.5. Классификация гормонов
- 2.3. Единство нервных и гуморальных механизмов регуляции
- 2.3.1. Саморегуляция функций организма
- 2.3.2. Обратная связь как один из ведущих механизмов в регуляции функций организма
- 2.3.3. Рефлекторный принцип регуляции функций
- 2.4. Общие черты компенсаторно-приспособительных реакций организма
- 3.1.2. Нервная система позвоночных животных
- 3.2.2. Принцип общего конечного пути
- 3.2.3. Временная и пространственная суммация. Окклюзия
- 3.2.5. Принцип доминанты
- 3.3. Спинной мозг
- 3.3.1. Нейронные структуры и их свойства
- 3.3.2. Рефлекторная функция спинного мозга
- 3.3.3. Проводниковые функции спинного мозга
- 3.4.2. Рефлексы продолговатого мозга
- 3.4.3. Функции ретикулярной формации стволовой части мозга
- 3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- 3.7.2. Морфофункциональная организация таламуса
- 3.7.3. Гипоталамус
- 3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- 3.7.5. Терморегуляционная функция гипоталамуса
- 3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- 3.7.7. Гипоталамо-гипофизарная система
- 3.8.2. Функции лимбической системы
- 3.8.3. Роль лимбической системы в формировании эмоций
- 3.9. Базальные ядра и их функции
- 3.10.2. Проекционные зоны коры
- 3.10.3. Колончатая организация зон коры
- 3.11.2. Метод вызванных потенциалов
- 3.12. Закономерности эволюции коры больших полушарий
- 3.12.1. Происхождение новой коры
- 3.12.2. Организация новой коры у низших млекопитающих
- 3.12.3. Организация новой коры у высших млекопитающих
- 3.12.5. Развитие корковых межнейронных связей
- 3.13. Наследственно закрепленные формы поведения
- 3.13.1. Безусловные рефлексы.
- 3.13.2. Достижения этологов в исследовании врожденных форм поведения
- 3.14. Приобретенные формы поведения
- 3.14.1. Классификация форм научения
- 3) После исчезновения эти навыки самостоятельно не восстанавливаются.
- 3.14.2. Сон как форма приобретенного поведения
- 3.14.3. Закономерности условнорефлекторной деятельности
- 3.14.4. Торможение условных рефлексов
- 3.15.2. Механизмы условного торможения
- 3.16. Механизмы памяти
- 3.16.1. Кратковременная память
- 3.16.2. Долговременная память
- 3.17.2. Высшие интегративные системы мозга
- 3.17.4. Эволюция интегративной деятельности мозга
- 3.17.5. Онтогенез ассоциативных систем мозга
- 3.18. Функциональная структура поведенческого акта
- 3.18.1. Основные поведенческие доминанты
- 3) Описать структуру среды как закон связей между ее наиболее существенными переменными; 4) определить ведущее кинематическое звено для выполнения предстоящего двигательного акта.
- 3.18.2. Ассоциативные системы мозга и структура поведения
- 3.19.2. Сознание и неосознаваемое
- 3.20. Функциональная межполушарная асимметрия
- 3.21. Формирование высшей нервной деятельности ребенка
- 3.22. Мышление и речь
- 3.23. Сновидения, гипноз
- 3.24. Трудовая деятельность человека-оператора
- 3.25. Центральная регуляция движений
- 3.25.1. Управление ориентационными движениями и позой
- 3.25.2. Управление локомоцией
- 3.25.3. Организация манипуляторных движений
- 3.25.4. Корковая сенсомоторная интеграция
- 3.25.5. Программирование движений
- 3.25.6. Функциональная структура произвольного движения
- 3.26. Эмоции как компонент целостных поведенческих реакций
- 3.26.1. Биологическая роль эмоций
- 3.26.2. Эмоции и психическая деятельность
- 3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- 3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- 3.26.5. Эмоциогенные системы мозга
- 3.26.6. Влияние эмоциональных состояний на научение и память
- 3.26.7. Неврозы
- 3.27. Гематоэнцефалический барьер
- 4.1.2. Преобразование сигналов в рецепторах
- 4.1.3. Адаптация рецепторов
- 4.1.4. Сенсорные пути
- 4.1.5. Сенсорное кодирование
- 4.2. Соматическая сенсорная система
- 4.2.1. Соматическая сенсорная система беспозвоночных животных
- 4.2.2. Соматическая сенсорная система позвоночных животных
- 4.3. Скелетно-мышечная, или проприоцептивная, сенсорная система
- 4.3.1. Скелетно-мышечная сенсорная система беспозвоночных животных
- 4.3.2. Скелетно-мышечная сенсорная система позвоночных животных
- 4.4. Сенсорная система боковой линии
- 4.4.2. Электрорецепторы
- 4.4.3. Восходящие пути
- 4.5. Гравитационная сенсорная система
- 4.5.1. Гравитационная сенсорная система беспозвоночных животных
- 4.5.2. Гравитационная сенсорная система позвоночных животных
- 4.6. Слуховая сенсорная система
- 4.6.1. Физические характеристики звуковых сигналов
- 4.6.2. Слуховая сенсорная система беспозвоночных животных
- 4.6.3. Слуховая сенсорная система позвоночных животных
- 4.6.4. Эхолокация
- 4.7. Хеморецепторные сенсорные системы
- 4.7.1. Хеморецепторные сенсорные системы беспозвоночных животных
- 4.7.2. Хеморецепторные сенсорные системы позвоночных животных
- 4.8. Зрительная сенсорная система
- 4.8.1. Организация фоторецепторов
- 4.8.2. Механизмы фоторецепции
- 4.8.3. Зрительная сенсорная система беспозвоночных животных
- 4.8.4. Зрительная сенсорная система позвоночных животных
- 5.1. Дуга автономного рефлекса
- 5.1.1. Подразделение автономной нервной системы
- 5.1.2. Анатомические структуры
- 5.1.4. Различия в конструкции автономной и соматической нервной системы
- 5.1.5. Чувствительное звено дуги автономного рефлекса
- 5.1.6. Ассоциативное (вставочное) звено
- 5.1.7. Эфферентное звено
- 5.2. Синаптическая передача
- 5.2.1. Ацетилхолин
- 5.2.2. Норадреналин и адреналин
- 5.2.3. Трансдукторы
- 5.2.4. Серотонин
- 5.2.5. Аденозинтрифосфат (атф)
- 5.2.6. Вероятные кандидаты в медиаторы
- 5.2.7. Активные факторы
- 5.3.2. Аксон-рефлекс
- 5.3.3. Висцеросоматический рефлекс
- 5.3.4. Висцеросенсорный рефлекс
- 5.4. Влияние автономной нервной системы на деятельность эффекторных органов
- 5.4.1. Адаптационно-трофическая функция симпатической нервной системы
- 5.4.2. Роль парасимпатической нервной системы в регуляции висцеральных функций
- 5.4.3. Участие метасимпатической нервной системы в регуляции висцеральных функций
- 5.4.4. Тоническая активность
- 5.5.2. Стволовые центры
- 5.5.3. Гипоталамические центры
- 5.5.4. Лимбическая система
- 5.5.5. Мозжечок
- 5.5.6. Ретикулярная формация
- 5.5.7. Кора больших полушарий
- 6.1. Значение и место эндокринной регуляции в общей системе интеграционных механизмов
- 6.1.1. Методы изучения функций желез внутренней секреции
- 6.1.2. Понятие о нейросекреции
- 6.2.1. Гипоталамо-нейрогипофизарная система
- 6.2.2. Гипоталамо-аденогипофизарная система
- 6.2.3. Гипофиз
- 6.2.4. Шишковидное тело
- 6.3.2. Надпочечник и его гормоны
- 6.3.3. Гонады и половые гормоны
- 6.4.2. Гормональная регуляция водно-солевого гомеостаза
- 6.5. Поджелудочная железа и ее гормоны
- 6.6. Гормоны пищеварительного тракта
- 6.7. Гормоны сердечно-сосудистой системы
- 6.7.1. Гормоны сердца
- 6.7.2. Гормоны эндотелия
- 6.8. Гормоны плазмы и клеток крови
- 6.9. Гормонопоэз и основные механизмы трансдукции гормонального сигнала
- 6.10. Рецепторы гормонов
- 7.1. Эволюция внутренней среды организма
- 7.2. Основные механизмы поддержания постоянства внутренней среды организма. Понятие о гомеостазе
- 7.3. Понятие о системе крови
- 7.3.1. Основные функции крови
- 7.3.2. Объем и состав крови
- 7.3.3. Физико-химические свойства крови
- 7.4. Плазма крови
- 5 Г глобулина. Период полураспада альбумина составляет 10-15 сут глобулина - 5 сут.
- 7.5. Форменные элементы крови
- 7.5.1. Эритроциты
- 7.5.2. Пигменты крови
- 7.5.3.Скорость оседания эритроцитов (соэ)
- 7.5.4. Лейкоциты
- 7.5.5. Тромбоциты
- 7.6. Гемостаз (остановка кровотечения)
- 7.6.1. Свертывание крови
- 7.6.3. Противосвертывающие механизмы
- 7.7. Группы крови
- 7.7.2. Резус-фактор
- 7.8. Кроветворение и его регуляция
- 7.8.1. Эритропоэз
- 7.8.2. Лейкопоэз. Тромбоцитопоэз
- 7.9. Лимфа
- 8.1. Компоненты иммунной системы
- 8. 2. Механизмы неспецифического (врожденного) иммунитета
- 8.2.1. Фагоцитоз
- 8.2.2. Внеклеточное уничтожение (цитотоксичность)
- 8.2.3. Разрушение чужеродных клеток с помощью гуморальных механизмов
- 8.2.4. Роль острой воспалительной реакции в механизмах неспецифической резистентности организма
- 8.3. Механизмы специфического приобретенного иммунитета
- 8.3.1. Характеристика клеток, участвующих в реакциях специфического иммунитета
- 8.3.2. Иммуноглобулины, структура и роль в реализации специфического иммунного ответа
- 8.4.2. Участие цитокинов в регуляции иммунных реакций
- 8.4.4. Регуляторные иммунонейроэндокринные сети
- 9.2. Функции сердца
- 9.2.1. Общие принципы строения
- 9.2.2. Свойства сердечной мышцы
- 9.2.3. Механическая работа сердца
- 9.2.4. Тоны сердца
- 9.2.5. Основные показатели деятельности сердца
- 9.4. Регуляция работы сердца
- 9.4.1. Внутриклеточная регуляция
- 9.4.2. Межклеточная регуляция
- 9.4.3. Внутрисердечная нервная регуляция
- 9.4.4. Экстракардиальная нервная регуляция
- 9.4.5. Гуморальная регуляция
- 9.4.6. Тонус сердечных нервов
- 9.4.7. Гипоталамическая регуляция
- 9.4.8. Корковая регуляция
- 9.4.9. Рефлекторная регуляция
- 9.4.10. Эндокринная функция сердца
- 9.5. Сосудистая система
- 9.5.1. Эволюция сосудистой системы
- 9.5.2. Функциональные типы сосудов.
- 9.5.3. Основные законы гемодинамики
- 9.5.4. Давление в артериальном русле
- 9.5.5. Артериальный пульс
- 9.5.6. Капиллярный кровоток
- 9.5.7. Кровообращение в венах
- 9.6. Регуляция кровообращения
- 9.6.1. Местные механизмы регуляции кровообращения
- 9.6.2. Нейрогуморальная регуляция системного кровообращения
- 9.7. Кровяное депо
- 9.8.2. Мозговое кровообращение
- 9.8.3. Легочное кровообращение
- 9.8.4. Кровообращение в печени
- 9.8.5. Почечное кровообращение
- 9.8.6. Кровообращение в селезенке
- 9.9. Кровообращение плода
- 9.10.3. Состав, свойства, количество лимфы
- 9.10.4. Лимфообразование
- 9.10.5. Лимфоотток
- 10.1. Эволюция типов дыхания
- 10.1.1. Дыхание беспозвоночных животных
- 10.1.2. Дыхание позвоночных животных
- 10.2. Дыхательный акт и вентиляция легких
- 10.2.1. Дыхательные мышцы
- 10.2.2. Дыхательный акт
- 10.2.3. Вентиляция легких и внутрилегочный объем газов
- 10.2.4. Соотношение вентиляции и перфузии легких
- 10.2.5. Паттерны дыхания
- 10.3.1. Диффузия кислорода и углекислого газа через аэрогематический барьер
- 10.3.2. Транспорт кислорода кровью
- 10.3.3. Транспорт углекислого газа кровью
- 10.3.4. Транспорт кислорода и углекислого газа в тканях
- 10.4.2. Хеморецепторы и хеморецепторные стимулы дыхания
- 10.4.3. Механорецепторы дыхательной системы
- 10.4.4. Роль надмостовых структур
- 10.5.2. Влияние уровня бодрствования
- 10.5.3. Эмоциональные и стрессорные факторы
- 10.5.4. Мышечная деятельность
- 11.1. Источники энергии и пути ее превращения в организме
- 11.1.1. Единицы измерения энергии
- 11.1.3.Методы исследования обмена энергии
- 11.1.4. Основной обмен
- 11.1.5. Обмен в покое и при мышечной работе
- 11.1.7. Запасы энергии
- 11.2. Питание
- 11.2.1. Потребность в пище и рациональное питание
- 11.2.2. Потребность в воде
- 11.2.3. Потребность в минеральных веществах
- 11.2.4. Потребность в углеводах
- 11.2.5. Потребность в липидах
- 11.2.6. Потребность в белках
- 11.2.7. Потребность в витаминах
- 11.2.8. Потребность в пищевых волокнах
- 11.3. Терморегуляция
- 11.3.1. Пойкилотермия и гомойотермия
- 11.3.2. Температура тела
- 11.3.3. Терморецепция, субъективные температурные ощущения и дискомфорт
- 11.3.4. Центральные (мозговые) механизмы терморегуляции
- 11.3.5. Теплопродукция
- 11.3.6. Теплоотдача
- 11.3.9. Тепловая и холодовая адаптация
- 11.3.10. Сезонная спячка
- 11.3.11. Онтогенез терморегуляции
- 11.3.12. Лихорадка
- 12.1.2. Регуляторная часть пищеварительной системы
- 12.1.3. Интеграция нейромедиаторных и гормональных факторов в пищеварительной cистеме
- 12.1.4. Типы пищеварения
- 12.2. Секреторная функция
- 12.2.1. Слюнные железы
- 12.2.2. Железы желудка
- 12.2.3. Поджелудочная железа
- 12.2.4. Желчеотделение и желчевыделение
- 12.2.5. Секреция кишечных желез
- 12.3. Переваривание пищевых веществ
- 12.4. Мембранное пищеварение и всасывание
- 12.4.2. Всасывание
- 12.5. Моторная функция
- 12.5.1. Сопряжение возбуждения с сокращением в гладкомышечных клетках
- 12.5.2. Регуляция сократительной активности гладких мышц желудочно-кишечного тракта
- 12.5.3. Моторная функция различных отделов желудочно-кишечного тракта
- 12.5.4. Периодическая моторная деятельность желудочно-кишечного тракта
- 12.6.2. Насыщение
- 13.1. Водные фазы
- 13.2. Эволюция осморегуляции
- 13.3. Выделительные органы беспозвоночных животных различных типов
- 13.4. Почка позвоночных животных
- 13.5. Структура и функции почки млекопитающих
- 13.6.2. Клубочковая фильтрация
- 13.6.3. Реабсорбция в канальцах
- 13.6.5. Синтез веществ в почке
- 13.6.6. Осмотическое разведение и концентрирование мочи
- 13.6.7. Роль почек в осморегуляции и волюморегуляции
- 13.6.8. Механизм участия почек в регуляции кислотно-основного равновесия
- 13.6.9. Экскреторная функция почки
- 13.7. Нервная регуляция деятельности почки
- 13.8. Инкреторная функция почки
- 13.9. Метаболическая функция почки
- 13.10. Выделение мочи
- 14.2. Мужские половые органы
- 14.4. Половое созревание
- 14.5. Половое влечение
- 14.6. Половой акт
- 14.7. Половая жизнь
- 1) Парасимпатические из крестцового отдела (рефлекторные и психогенные влияния); 2) симпатические из пояснично-грудного отдела (психогенные влияния)
- 14.8.2. Половые рефлексы у женщин
- 14.9. Половой цикл
- 14.10. Оплодотворение
- 14.11. Беременность
- 14.11.1. Плацента
- 14.11.2. Плод
- 14.11.3. Состояние организма матери при беременности
- 14.11.4. Многоплодная беременность
- 14.11.5. Латентная стадия беременности
- 14.11.6. Беременность у животных
- 14.12. Роды
- 14.13.2. Физиология органов размножения самок
- 14.13.3. Инкубация
- 14.14. Лактация
- 15.2. Проявления старения
- 15.3. Профилактика старения