Роль металлов в функционировании ферментов
Более 25% всех ферментов для проявления полной каталитической активности нуждается в ионах металлов. Роль металлов в ферментативном катализе разнообразна.
Во-первых, металл может способствовать образованию промежуточного соединения между ферментом и субстратом. Именно такой случай наблюдается при действии лейцинаминопептидазы и карбоксипептидазы А – присоединение фермента к субстрату осуществляется, благодаря образованию координационных связей через атом марганца (или магния) и атом цинка (рис. 1.4.24).
Рис. 1.4.24. Роль металла в присоединении субстрата к ферменту
Во-вторых, металл может сам участвовать в реакции, например в переносе электронов, то есть в окислительно-восстановительных реакциях. Это происходит при действии нитратредуктазы. Входящий в состав данного фермента молибден сам взаимодействует с нитратом и затем с флавиновым ферментом, который, в свою очередь, реагирует с содержащей NАD+ или NАDР+ дегидрогеназой. Это ясно из рис. 1.4.25.
Рис. 1.4.25. Участие молибдена в действии нитратредуктазы
В-третьих, металл может обеспечивать сохранение вторичной, третичной и четвертичной структуры ферментного белка. В этом отношении прекрасным примером является α-амилаза. Все виды α-амилазы – панкреатическая, солодовая, плесневая, бактериальная и слюнная – содержат кальций, который необходим именно для поддержания вторичной и третичной структуры фермента.
Лишённая кальция α-амилаза имеет такую же активность, как и нативный, содержащий кальций фермент. Это ясно видно из рис. 1.4.26. Этот же рисунок показывает, что фермент, лишенный кальция, крайне неустойчив, чрезвычайно легко денатурируется и теряет активность в результате двухчасовой инкубации при рН, отклоняющемся от оптимального.
Рис. 1.4.26. Стабильность α-амилазы Bacillиs sиbtilis при инкубации в течение двух часов при 25º и разных рН (по Э. Фишеру и сотр.). 1 – без Cа2+; 2 – с Са2+
Рис. 1.4.27. Влияние ЭДТА и трипсина на α-амилазу Bacillиs sиbtilis (по Э. Фишеру). 1 – инкубация с трипсином; 2 – инкубация с ЭДТА; 3 – инкубация с ЭДТА и трипсином (рН 7,5; 25º)
Таким образом, при оптимальном рН вторичная и третичная структура фермента поддерживается благодаря водородным и другим дополнительным связям; при более кислой и более щелочной реакции среды на первый план в качестве фактора, стабилизирующего структуру фермента, выступает кальций.
Стабилизация структуры фермента под влиянием кальция проявляется также в том, что фермент, лишенный кальция, очень легко расщепляется протеолитическими ферментами. Это видно на рис. 1.4.27, показывающем активность α-амилазы, обработанной трипсином и ЭДТА, который связывает кальций, образуя е ним прочнoe внутрикомплексное соединение (хелат). Из рисунка также видно, что трипсин практически не расщепляет α-амилазу; однако если α-амилаза предварительно обработана ЭДТА, то она быстро расщепляется трипсином. Таким образом, кальций в данном случае играет роль фактора, предохраняющего α-амилазу от расщепления протеолитическими ферментами.
Что касается роли металла в поддержании четвертичной структуры ферментного белка, то в этом отношении хорошим примером является дрожжевая алкоголь дегидрогеназа. Этот фермент имеет молекулярную массу 151 кДа, содержит четыре атома цинка в молекуле и четыре молекулы NАD+. Удаление цинка из молекулы алкогольдегидрогеназы вызывает не только её инактивацию, но и диссоциацию ферментного белка на четыре неактивные субъединицы с молекулярной массой 36 кДа каждая.
Наконец, четвертый возможный способ действия металла – когда металл способствует соединению апофермента с коферментом. Подобное действие металла наблюдается в случае алкогольдегидрогеназы и глицеральдегидфосфатдегидрогеназы.
Заканчивая раздел, посвященный роли металлов в ферментативном катализе, нужно подчеркнуть, что за последние годы все чаще выявляется, что тот или иной металл в незначительных количествах играет важную роль в ферментативных реакциях. Роль так называемых микроэлементов в обмене веществ растений и животных как раз и заключается в том, что они необходимы для построения и нормального функционирования целого ряда ферментов.
Все это еще раз свидетельствует о том, что различные стороны обмена веществ неразрывно связаны между собой – недостаток или нарушение обмена какого-либо металла в растительном или животном организме сразу же сказывается на действии того или иного фермента, вызывая соответствующее заболевание
- Учебное пособие
- Раздел 1. Структура и свойства ферментов
- Инженерная энзимология. Иммобилизованные ферменты. Новые пути практического использования ферментов. Применение ферментов в промышленности, сельском хозяйстве, медицине
- Принцип классификации ферментов. Классы ферментов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Основные положения систематической и тривиальной номенклатуры ферментов
- Способы количественного выражения активности ферментов. Единицы активности. Удельная и молекулярная активность
- Методы определения активности ферментов: колориметрический, спектрофотометрический, флуориметрический, манометрический, биолюминесцентный и др.
- Прямой и непрямой оптический тест Варбурга. Расчет ферментативной активности при определении по конечной точке и при кинетическом определении
- Лекция 1.2 выделение и очистка ферментов
- Разрушение клеток и экстракция белков
- Тепловая денатурация
- Осаждение белков
- Гель-фильтрация
- Разделение белков путем адсорбции
- Выбор ионообменника
- Элюция адсорбированного белка
- Аффинная хроматография
- Гидрофобная хроматография
- Металлохелатная аффинная хроматография
- Высокоэффективная жидкостная хроматография
- Электрофорез
- Изоэлектрическое фокусирование
- Капиллярный электрофорез
- Двумерные системы электрофореза
- Кристаллизация белков
- Лекция 1.3 уровни структурной организации ферментов
- Многостадийный процесс образования пространственной структуры белка
- Механизмы регуляции процесса сворачивания полипептидной цепи внутри клетки
- Ферменты, участвующие в фолдинге белка
- Специальные белки, увеличивающие эффективность сворачивания полипептидной цепи в нативную конформацию
- Посттрансляционная модификация белка
- Роль доменов в пространственной организации молекул ферментов
- Увеличение числа доменов в ферменте и усложнение взаимодействий между ними
- Роль доменов в формирование активного центра фермента
- Роль доменов в регуляции ферментативной активности
- Роль доменов в связывание ферментов с мембранами
- Полифункциональные ферменты
- Бифункциональные ферменты, катализирующие реакции одного метаболического пути
- Бифункциональные ферменты, катализирующие противоположно направленные реакции
- Лекция 1.4 Кофакторы ферментов и их роль в катализе Коферменты, простетические группы, ионы металлов
- Классификация кофакторов
- Функции кофакторов
- Кофакторы окислительно-восстановительных процессов Никотинамидные кофакторы
- Кофакторы переноса групп Коферменты – производные пиридоксина
- Кофакторы процессов синтеза, изомеризации и расщепления с-с связей Биотин
- Роль металлов в функционировании ферментов
- Лекция 1.5. Топография активных центров простых и сложных ферментов
- Методы изучения активных центров ферментов
- Раздел 2. Кинетика и термодинамика
- Ферментативных реакций
- Лекция 2.1.
- Кинетика химических реакций
- Скорость химической реакции
- Основной постулат химической кинетики ‒ закон действия масс
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Реакции третьего порядка
- Уравнения односторонних реакций 0-го, 1-го и 2-ого порядка
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Молекулярность элементарных реакций
- Методы определения порядка реакции
- Зависимость скорости реакции от температуры. Уравнения Вант-Гоффа и Аррениуса.
- Катализ
- Лекция 2.2. Стационарная кинетика ферментативный реакций
- Уравнение Михаэлиса-Ментен
- Характеристика кинетических констант
- Методы определения Км и Vmax
- Лекция 2.3. Ингибиторы ферментов.
- Конкурентное ингибирование
- Неконкурентное ингибирование
- Бесконкурентное ингибирование
- Смешанный тип ингибирования
- Субстратное ингибирование
- Методы определения константы ингибирования. Метод Диксона
- Лекция 2.4 Ферменты, не подчиняющиеся кинетике Михаэлиса-Ментен
- Методы определения коэффициента Хилла
- Раздел 3.Механизмы ферментативного катализа
- Сущность явления катализа
- Стадии образования фермент-субстратного комплекса
- Природа сил, стабилизирующих различные конформационные состояния ферментсубстратного комплекса
- Электростатические взаимодействия
- Водородные связи
- Вандерваальсовы взаимодействия
- Гидрофобные взаимодействия
- Факторы, определяющие эффективность и специфичность ферментативного катализа
- Физико-химические механизмы ферментативного катализа
- Лекция 3.2
- Механизм действия гидролаз на примере карбоксипептидазы а
- Связывание субстрата карбоксипептидазой а
- Работы Липскомба с сотрудниками по установлению молекулярного механизма действия кпа
- Методы для изучения механизма действия ферментов
- Лекция 3.3 Специфичность – уникальное свойство ферментов
- Относительная или групповая специфичность действия
- Абсолютная специфичность действия
- Стереоспецифичность ферментов
- Концепция стерического соответствия «ключ-замок»
- Концепция индуцированного соответствия
- Раздел 4. Контроль активности ферментов лекция 4.1. Ферменты в клетке и организованных системах
- Распределение ферментов в клетке
- Ферменты, присутствующие в ядре
- Ферменты митохондрий
- Лизосомальные ферменты
- Ферменты эндоплазматического ретикулума
- Ферменты, локализованные в цитозоле
- Мембранные ферменты
- Уровни структурной организации ферментов в клетке
- Мультиферментные комплексы
- Пируватдегидрогеназный комплекс
- Мультиферментные конъюгаты
- Метаболоны
- Лекция 4.2 Изостерические и аллостерические механизмы регуляции активности ферментов
- Изостерическая регуляция
- Изоферменты
- Лекция 4.3 ковалентная модификация ферментов и ее типы
- Лекция 4.4
- Регуляция количества ферментов в клетке
- Контроль количества ферментов в клетке – процесс, зависящий от соотношения скоростей их биосинтеза и деградации.
- Время полужизни различных ферментов
- Фермент
- Аминокислоты
- Биосинтез ферментов и его регуляция на генетическом уровне. Конститутивные и индуцибельные (адаптивные) ферменты. Репрессия и индукция биосинтеза ферментов
- Убиквитин-протеосомный путь деградации белков у эукариот. Убиквитин – белок, маркирующий белки для деградации. Строение 26s протеосомы
- Раздел 5. Прикладное значение ферментов лекция 5.1. Генетическая инженерия ферментов
- Использование рекомбинантных ферментов
- Лекция 5.2 Ферменты в медицине (часть I)
- Энзимодиагностика Органная специфичность в распределении ферментов
- Ферменты сыворотки крови
- Факторы, влияющие на уровень ферментов во внеклеточной жидкости
- Диагностическое значение снижения ферментативной активности
- Неспецифическое повышение ферментативной активности
- Применение ферментов в качестве аналитических реагентов
- Лактатдегидрогеназа
- Лекция 5.3 Ферменты в медицине (часть II) Энзимопатии
- Врождённые (наследственные) энзимопатии
- Механизм возникновения наследственных энзимопатий
- Блок обмена веществ
- Примеры наследственных энзимопатий
- Приобретённые энзимопатии
- Энзимотерапия Использование ферментов в качестве лекарственных препаратов
- Использование ингибиторов ферментов в качестве лекарственных препаратов
- Библиографический список