Аминокислоты
Рис. 4.4.1. Количество фермента определяется балансом процессов его синтеза и распада.
В быстро растущих бактериях общая скорость распада белков составляет около 2% в час. Иное положение складывается, когда бактерии находятся в условиях голодания или их переносят на свежую среду, бедную углеродом. В этих условиях распад бактериальных белков идет со скоростью 7 – 10% в час.
Сочетание процессов синтеза и распада ферментов называют обновлением ферментов. Обновление происходит и у бактерий, и у млекопитающих, однако значение распада ферментов как средства регуляции их количества у бактерий недооценивалось.
В клетках млекопитающих обновление белков было обнаружено гораздо раньше, чем у бактерий. Указания на этот процесс у человека были получены более ста лет назад на основании наблюдений за людьми, получавшими специальную диету. Однако лишь после классических работ Шёнхеймера, начатых незадолго до второй мировой войны, было твердо установлено, что обновление клеточных белков происходит на протяжении всей жизни. Измеряя скорость включения в данный белок 15N-меченных аминокислот и скорость утраты метки белком, Шёнхеймер пришел к выводу, что белки в организме человека находятся в состоянии «динамического равновесия». Это представление позднее было распространено на другие компоненты организма, включая липиды и нуклеиновые кислоты.
Основные этапы синтеза белков достаточно хорошо изучены, чего нельзя сказать о процессах распада ферментов. Распад ферментов происходит в результате их гидролиза протеолитическими ферментами, но о механизме регуляции этой протеолитической активности мало что известно. Установлено только, что процессы регуляции могут быть сопряжены с расходованием АТР. Чувствительность фермента к протеолизу зависит от его конформации. Присутствие или отсутствие субстратов, коферментов, ионов металлов – все это способно влиять на конформацию белка и его чувствительность к протеолизу. Поэтому скорость распада специфических ферментов может зависеть от концентрации в клетке субстратов, коферментов и, возможно, ионов. Эти представления можно хорошо проиллюстрировать на примере аргиназы и триптофаноксигеназы (триптофанпирролазы). Регуляция содержания аргиназы в печени может осуществляться путем изменения либо kсинт, либо kрасп. Переход на обогащенную белковую диету приводит к возрастанию содержания аргиназы из-за повышения скорости ее синтеза. Содержание фермента в печени возрастает также у голодающих животных. Но это обусловлено снижением скорости распада аргиназы, поскольку значение kсинт остается постоянным. Теперь о ситуации, которая наблюдается со вторым ферментом: инъекция млекопитающим глюкокортикоидов, как и инъекция триптофана, повышает содержание триптофаноксигеназы. Гормон вызывает повышение скорости синтеза фермента kсинт, тогда как триптофан не оказывает влияния на kсинт, а понижает kрасп, повышая устойчивость оксигеназы к протеолизу.
Содержание ферментов в тканях млекопитающих может изменяться в результате действия различных физиологических и гормональных факторов, а также под влиянием диеты. Известно много примеров такого рода для разных тканей и различных метаболических путей (табл. 4.4.1), однако знания о молекулярном механизме процессов носят фрагментарный характер.
Таблица 4.4.1
Некоторые ферменты печени крысы, скорость синтеза которых изменяется в зависимости от условий среды
Ферменты | Время полуобновления
t1/2, ч |
Внешний стимул | Относительное изменение скорости синтеза |
Аргиназа | 100 - 120 | Голодание, глюкокортикоиды | + 2 |
Переход от обогащенной к бедной белком диете | - 2 | ||
Сериндегидратаза | 20 | Глюкагон, аминокислоты | + 100 |
Гистидаза | 60 | Переход от бедной к обогащенной белком диете | + 20 |
Глюкозо-6-фосфатлегидрогеназа | 15 | Гормоны щитовидной железы; переход от бедной диеты к диете с высоким содержанием углеводов | + 10 |
D-Глицерофосфатдегид-рогеназа | 100 | Гормоны щитовидной железы | + 10 |
Фруктозо-1,6-фосфатаза |
| Глюкоза | + 10 |
Цитратлиаза |
| Переход от голодания к диете с высоким содержанием углеводов и низким содержанием жиров | + 30 |
Синтаза жирных кислот |
| Голодание | - 10 |
Переход от голодания к диете, не содержащей жиров, постная диета, 5% холестерола в пище | + 30 |
Глюкокортикоиды повышают концентрацию тирозин-трансаминазы, увеличивая kсинт. На этом примере была впервые четко показана гормональная регуляция синтеза фермента в тканях млекопитающих. Инсулин и глюкагон, несмотря на взаимный антагонизм их физиологического действия, оба независимо повышают kсинт в 4 – 5 раз. Действие глюкагона, вероятно, опосредуется сАМР, который оказывает аналогичное гормону действие в органной культуре печени крысы.
- Учебное пособие
- Раздел 1. Структура и свойства ферментов
- Инженерная энзимология. Иммобилизованные ферменты. Новые пути практического использования ферментов. Применение ферментов в промышленности, сельском хозяйстве, медицине
- Принцип классификации ферментов. Классы ферментов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Основные положения систематической и тривиальной номенклатуры ферментов
- Способы количественного выражения активности ферментов. Единицы активности. Удельная и молекулярная активность
- Методы определения активности ферментов: колориметрический, спектрофотометрический, флуориметрический, манометрический, биолюминесцентный и др.
- Прямой и непрямой оптический тест Варбурга. Расчет ферментативной активности при определении по конечной точке и при кинетическом определении
- Лекция 1.2 выделение и очистка ферментов
- Разрушение клеток и экстракция белков
- Тепловая денатурация
- Осаждение белков
- Гель-фильтрация
- Разделение белков путем адсорбции
- Выбор ионообменника
- Элюция адсорбированного белка
- Аффинная хроматография
- Гидрофобная хроматография
- Металлохелатная аффинная хроматография
- Высокоэффективная жидкостная хроматография
- Электрофорез
- Изоэлектрическое фокусирование
- Капиллярный электрофорез
- Двумерные системы электрофореза
- Кристаллизация белков
- Лекция 1.3 уровни структурной организации ферментов
- Многостадийный процесс образования пространственной структуры белка
- Механизмы регуляции процесса сворачивания полипептидной цепи внутри клетки
- Ферменты, участвующие в фолдинге белка
- Специальные белки, увеличивающие эффективность сворачивания полипептидной цепи в нативную конформацию
- Посттрансляционная модификация белка
- Роль доменов в пространственной организации молекул ферментов
- Увеличение числа доменов в ферменте и усложнение взаимодействий между ними
- Роль доменов в формирование активного центра фермента
- Роль доменов в регуляции ферментативной активности
- Роль доменов в связывание ферментов с мембранами
- Полифункциональные ферменты
- Бифункциональные ферменты, катализирующие реакции одного метаболического пути
- Бифункциональные ферменты, катализирующие противоположно направленные реакции
- Лекция 1.4 Кофакторы ферментов и их роль в катализе Коферменты, простетические группы, ионы металлов
- Классификация кофакторов
- Функции кофакторов
- Кофакторы окислительно-восстановительных процессов Никотинамидные кофакторы
- Кофакторы переноса групп Коферменты – производные пиридоксина
- Кофакторы процессов синтеза, изомеризации и расщепления с-с связей Биотин
- Роль металлов в функционировании ферментов
- Лекция 1.5. Топография активных центров простых и сложных ферментов
- Методы изучения активных центров ферментов
- Раздел 2. Кинетика и термодинамика
- Ферментативных реакций
- Лекция 2.1.
- Кинетика химических реакций
- Скорость химической реакции
- Основной постулат химической кинетики ‒ закон действия масс
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Реакции третьего порядка
- Уравнения односторонних реакций 0-го, 1-го и 2-ого порядка
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Молекулярность элементарных реакций
- Методы определения порядка реакции
- Зависимость скорости реакции от температуры. Уравнения Вант-Гоффа и Аррениуса.
- Катализ
- Лекция 2.2. Стационарная кинетика ферментативный реакций
- Уравнение Михаэлиса-Ментен
- Характеристика кинетических констант
- Методы определения Км и Vmax
- Лекция 2.3. Ингибиторы ферментов.
- Конкурентное ингибирование
- Неконкурентное ингибирование
- Бесконкурентное ингибирование
- Смешанный тип ингибирования
- Субстратное ингибирование
- Методы определения константы ингибирования. Метод Диксона
- Лекция 2.4 Ферменты, не подчиняющиеся кинетике Михаэлиса-Ментен
- Методы определения коэффициента Хилла
- Раздел 3.Механизмы ферментативного катализа
- Сущность явления катализа
- Стадии образования фермент-субстратного комплекса
- Природа сил, стабилизирующих различные конформационные состояния ферментсубстратного комплекса
- Электростатические взаимодействия
- Водородные связи
- Вандерваальсовы взаимодействия
- Гидрофобные взаимодействия
- Факторы, определяющие эффективность и специфичность ферментативного катализа
- Физико-химические механизмы ферментативного катализа
- Лекция 3.2
- Механизм действия гидролаз на примере карбоксипептидазы а
- Связывание субстрата карбоксипептидазой а
- Работы Липскомба с сотрудниками по установлению молекулярного механизма действия кпа
- Методы для изучения механизма действия ферментов
- Лекция 3.3 Специфичность – уникальное свойство ферментов
- Относительная или групповая специфичность действия
- Абсолютная специфичность действия
- Стереоспецифичность ферментов
- Концепция стерического соответствия «ключ-замок»
- Концепция индуцированного соответствия
- Раздел 4. Контроль активности ферментов лекция 4.1. Ферменты в клетке и организованных системах
- Распределение ферментов в клетке
- Ферменты, присутствующие в ядре
- Ферменты митохондрий
- Лизосомальные ферменты
- Ферменты эндоплазматического ретикулума
- Ферменты, локализованные в цитозоле
- Мембранные ферменты
- Уровни структурной организации ферментов в клетке
- Мультиферментные комплексы
- Пируватдегидрогеназный комплекс
- Мультиферментные конъюгаты
- Метаболоны
- Лекция 4.2 Изостерические и аллостерические механизмы регуляции активности ферментов
- Изостерическая регуляция
- Изоферменты
- Лекция 4.3 ковалентная модификация ферментов и ее типы
- Лекция 4.4
- Регуляция количества ферментов в клетке
- Контроль количества ферментов в клетке – процесс, зависящий от соотношения скоростей их биосинтеза и деградации.
- Время полужизни различных ферментов
- Фермент
- Аминокислоты
- Биосинтез ферментов и его регуляция на генетическом уровне. Конститутивные и индуцибельные (адаптивные) ферменты. Репрессия и индукция биосинтеза ферментов
- Убиквитин-протеосомный путь деградации белков у эукариот. Убиквитин – белок, маркирующий белки для деградации. Строение 26s протеосомы
- Раздел 5. Прикладное значение ферментов лекция 5.1. Генетическая инженерия ферментов
- Использование рекомбинантных ферментов
- Лекция 5.2 Ферменты в медицине (часть I)
- Энзимодиагностика Органная специфичность в распределении ферментов
- Ферменты сыворотки крови
- Факторы, влияющие на уровень ферментов во внеклеточной жидкости
- Диагностическое значение снижения ферментативной активности
- Неспецифическое повышение ферментативной активности
- Применение ферментов в качестве аналитических реагентов
- Лактатдегидрогеназа
- Лекция 5.3 Ферменты в медицине (часть II) Энзимопатии
- Врождённые (наследственные) энзимопатии
- Механизм возникновения наследственных энзимопатий
- Блок обмена веществ
- Примеры наследственных энзимопатий
- Приобретённые энзимопатии
- Энзимотерапия Использование ферментов в качестве лекарственных препаратов
- Использование ингибиторов ферментов в качестве лекарственных препаратов
- Библиографический список