Водородные связи
Несмотря на то, что многие субстраты не имеют заряда, они связываются с ферментами с высокой степенью специфичности и сродства. Основной вид взаимодействия таких субстратов, а также большинства заряженных субстратов с ферментами – это образование водородных связей. В водородной связи атом водорода связан сразу с двумя другими атомами. Тот атом, с которым водород связан более прочно, называют донором водорода, тогда как второй атом – акцептором водорода. По существу водородную связь можно рассматривать как промежуточное взаимодействие, возникающее при переносе протона от кислоты к основанию. Атом-акцептор должен иметь частичный отрицательный заряд, который и притягивает водород.
При образовании водородных связей в биологических системах атомами-донорами служат атомы азота или кислорода, ковалентно связанные с атомом водорода. Роль атомов-акцепторов выполняют кислород или азот. Типы водородных связей и их длины приведены в табл. 3.1.2. Энергия связей колеблется от примерно 3 до 7 ккал/моль.
Таблица 3.1.2
Типичные размеры водородных связей
-
Связь
Длина, нм
О – Н …О
0,270нм
О – Н …О─
0,263нм
О – Н … N
0,288нм
N – H … O
0,304нм
N+ – H … O
0,293нм
N – H … N
0,310нм
Водородные связи прочнее, чем связи, обусловленные вандерваальсовыми взаимодействиями, но значительно слабее, чем ковалентные связи. Важная особенность водородных связей состоит в том, что их энергия зависит от геометрии. Водородная связь оказывается наиболее сильной, если донор, водород и акцептор лежат на одной прямой. Если же атом-акцептор расположен под углом по отношению к линии, соединяющей атом-донор и водород, то связь будет тем слабее, чем больше этот угол:
Роль водородных связей во взаимодействии субстрата с ферментом хорошо видна на примере связывания уридинсодержащей части субстрата с панкреатической рибонуклеазой – ферментом, расщепляющим рибонуклеиновую кислоту (рис. 3.1.1).
Рис. 3.1.1. Образование водородных связей при связывании субстрата рибонуклеазой
В этом случае образуются три водородные связи:
1. Одна из С=О-групп уридинового кольца соединена водородной связью с N-Н-группой пептидной цепи;
2. N–Н-группа уридинового кольца соединена водородной связью с
–ОН-группой остатка треонина;
3. Другая С=О-группа уридинового кольца соединена водородной связью с –ОН-группой остатка серина.
- Учебное пособие
- Раздел 1. Структура и свойства ферментов
- Инженерная энзимология. Иммобилизованные ферменты. Новые пути практического использования ферментов. Применение ферментов в промышленности, сельском хозяйстве, медицине
- Принцип классификации ферментов. Классы ферментов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Основные положения систематической и тривиальной номенклатуры ферментов
- Способы количественного выражения активности ферментов. Единицы активности. Удельная и молекулярная активность
- Методы определения активности ферментов: колориметрический, спектрофотометрический, флуориметрический, манометрический, биолюминесцентный и др.
- Прямой и непрямой оптический тест Варбурга. Расчет ферментативной активности при определении по конечной точке и при кинетическом определении
- Лекция 1.2 выделение и очистка ферментов
- Разрушение клеток и экстракция белков
- Тепловая денатурация
- Осаждение белков
- Гель-фильтрация
- Разделение белков путем адсорбции
- Выбор ионообменника
- Элюция адсорбированного белка
- Аффинная хроматография
- Гидрофобная хроматография
- Металлохелатная аффинная хроматография
- Высокоэффективная жидкостная хроматография
- Электрофорез
- Изоэлектрическое фокусирование
- Капиллярный электрофорез
- Двумерные системы электрофореза
- Кристаллизация белков
- Лекция 1.3 уровни структурной организации ферментов
- Многостадийный процесс образования пространственной структуры белка
- Механизмы регуляции процесса сворачивания полипептидной цепи внутри клетки
- Ферменты, участвующие в фолдинге белка
- Специальные белки, увеличивающие эффективность сворачивания полипептидной цепи в нативную конформацию
- Посттрансляционная модификация белка
- Роль доменов в пространственной организации молекул ферментов
- Увеличение числа доменов в ферменте и усложнение взаимодействий между ними
- Роль доменов в формирование активного центра фермента
- Роль доменов в регуляции ферментативной активности
- Роль доменов в связывание ферментов с мембранами
- Полифункциональные ферменты
- Бифункциональные ферменты, катализирующие реакции одного метаболического пути
- Бифункциональные ферменты, катализирующие противоположно направленные реакции
- Лекция 1.4 Кофакторы ферментов и их роль в катализе Коферменты, простетические группы, ионы металлов
- Классификация кофакторов
- Функции кофакторов
- Кофакторы окислительно-восстановительных процессов Никотинамидные кофакторы
- Кофакторы переноса групп Коферменты – производные пиридоксина
- Кофакторы процессов синтеза, изомеризации и расщепления с-с связей Биотин
- Роль металлов в функционировании ферментов
- Лекция 1.5. Топография активных центров простых и сложных ферментов
- Методы изучения активных центров ферментов
- Раздел 2. Кинетика и термодинамика
- Ферментативных реакций
- Лекция 2.1.
- Кинетика химических реакций
- Скорость химической реакции
- Основной постулат химической кинетики ‒ закон действия масс
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Реакции третьего порядка
- Уравнения односторонних реакций 0-го, 1-го и 2-ого порядка
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Молекулярность элементарных реакций
- Методы определения порядка реакции
- Зависимость скорости реакции от температуры. Уравнения Вант-Гоффа и Аррениуса.
- Катализ
- Лекция 2.2. Стационарная кинетика ферментативный реакций
- Уравнение Михаэлиса-Ментен
- Характеристика кинетических констант
- Методы определения Км и Vmax
- Лекция 2.3. Ингибиторы ферментов.
- Конкурентное ингибирование
- Неконкурентное ингибирование
- Бесконкурентное ингибирование
- Смешанный тип ингибирования
- Субстратное ингибирование
- Методы определения константы ингибирования. Метод Диксона
- Лекция 2.4 Ферменты, не подчиняющиеся кинетике Михаэлиса-Ментен
- Методы определения коэффициента Хилла
- Раздел 3.Механизмы ферментативного катализа
- Сущность явления катализа
- Стадии образования фермент-субстратного комплекса
- Природа сил, стабилизирующих различные конформационные состояния ферментсубстратного комплекса
- Электростатические взаимодействия
- Водородные связи
- Вандерваальсовы взаимодействия
- Гидрофобные взаимодействия
- Факторы, определяющие эффективность и специфичность ферментативного катализа
- Физико-химические механизмы ферментативного катализа
- Лекция 3.2
- Механизм действия гидролаз на примере карбоксипептидазы а
- Связывание субстрата карбоксипептидазой а
- Работы Липскомба с сотрудниками по установлению молекулярного механизма действия кпа
- Методы для изучения механизма действия ферментов
- Лекция 3.3 Специфичность – уникальное свойство ферментов
- Относительная или групповая специфичность действия
- Абсолютная специфичность действия
- Стереоспецифичность ферментов
- Концепция стерического соответствия «ключ-замок»
- Концепция индуцированного соответствия
- Раздел 4. Контроль активности ферментов лекция 4.1. Ферменты в клетке и организованных системах
- Распределение ферментов в клетке
- Ферменты, присутствующие в ядре
- Ферменты митохондрий
- Лизосомальные ферменты
- Ферменты эндоплазматического ретикулума
- Ферменты, локализованные в цитозоле
- Мембранные ферменты
- Уровни структурной организации ферментов в клетке
- Мультиферментные комплексы
- Пируватдегидрогеназный комплекс
- Мультиферментные конъюгаты
- Метаболоны
- Лекция 4.2 Изостерические и аллостерические механизмы регуляции активности ферментов
- Изостерическая регуляция
- Изоферменты
- Лекция 4.3 ковалентная модификация ферментов и ее типы
- Лекция 4.4
- Регуляция количества ферментов в клетке
- Контроль количества ферментов в клетке – процесс, зависящий от соотношения скоростей их биосинтеза и деградации.
- Время полужизни различных ферментов
- Фермент
- Аминокислоты
- Биосинтез ферментов и его регуляция на генетическом уровне. Конститутивные и индуцибельные (адаптивные) ферменты. Репрессия и индукция биосинтеза ферментов
- Убиквитин-протеосомный путь деградации белков у эукариот. Убиквитин – белок, маркирующий белки для деградации. Строение 26s протеосомы
- Раздел 5. Прикладное значение ферментов лекция 5.1. Генетическая инженерия ферментов
- Использование рекомбинантных ферментов
- Лекция 5.2 Ферменты в медицине (часть I)
- Энзимодиагностика Органная специфичность в распределении ферментов
- Ферменты сыворотки крови
- Факторы, влияющие на уровень ферментов во внеклеточной жидкости
- Диагностическое значение снижения ферментативной активности
- Неспецифическое повышение ферментативной активности
- Применение ферментов в качестве аналитических реагентов
- Лактатдегидрогеназа
- Лекция 5.3 Ферменты в медицине (часть II) Энзимопатии
- Врождённые (наследственные) энзимопатии
- Механизм возникновения наследственных энзимопатий
- Блок обмена веществ
- Примеры наследственных энзимопатий
- Приобретённые энзимопатии
- Энзимотерапия Использование ферментов в качестве лекарственных препаратов
- Использование ингибиторов ферментов в качестве лекарственных препаратов
- Библиографический список