Инженерная энзимология. Иммобилизованные ферменты. Новые пути практического использования ферментов. Применение ферментов в промышленности, сельском хозяйстве, медицине
За последние годы в области энзимологии достигнуто глубокое понимание физико-химической сущности биологического катализа, выявлены основы специфичности и стереоспецифичности действия ферментов, найдены механизмы регуляции таких важнейших свойств ферментов, как активность и стабильность. Широкое развитие методов химической модификации и иммобилизации белков, а также достижения современной биохимии и микробиологии дали возможность выделять практически любой фермент в нужном количестве и на его основе создавать необходимый гетерогенный катализатор. Благодаря этому, с начала 70-х годов ферменты стали находить применение в современной промышленности и медицине. Открылись широкие перспективы использования ферментов для анализа, в тонком органическом синтезе, в системах биоконверсии солнечной энергии и ряде других областей.
Инженерная энзимология – новое научно-техническое направление, основанное на принципах целого ряда областей современного естествознания, в первую очередь химической энзимологии, биохимии, химической технологии, а также инженерно-экономических дисциплин. Основная задача инженерной энзимологии – разработка биотехнологических процессов, в которых используется каталитическое действие ферментов, как правило, выделенных из состава биологических систем или находящихся внутри клеток, искусственно лишенных способности расти. К инженерной энзимологии относятся соответствующие научно-исследовательские и инженерные разработки, если они ставят своей целью: а) получение нового продукта; б) получение известного продукта, но лучшего качества; в) улучшение технико-экономических показателей процесса по сравнению с аналогичными существующими процессами. В основе современной инженерной энзимологии лежит применение иммобилизованных ферментов и ферментных систем.
Иммобилизация ферментов – это перевод их в нерастворимое состояние с сохранением (частичным или полным) каталитической активности. Для получения иммобилизованных ферментов обычно применяют следующие методы:
1. Ковалентное присоединение молекул ферментов к водонерастворимому носителю, в качестве которого используют как органические (природные и синтетические) полимеры, так и неорганические материалы. К первым относится целлюлоза, хитин, агароза, декстраны, бумага, ткани, полистирол, найлон, ионообменные смолы и т.д., ко вторым – пористое стекло, силикагели, силохромы, керамика, металлы и т.д.
2. Захват фермента в сетку геля или полимера.
3. Ковалентная сшивка молекул фермента друг с другом или с инертными белками при помощи би- или полифункционального реагента.
4. Адсорбция фермента на водонерастворимых носителях (часто на ионитах).
5. Микрокапсулирование (захват раствора фермента в полупроницаемые капсулы размером 5 – 300 мкм).
В результате иммобилизации ферменты приобретают преимущества гетерогенных катализаторов – их можно удалять из реакционной смеси (и отделять от субстратов и продуктов ферментативной реакции) простой фильтрацией. Этим устраняется первый из перечисленных недостатков растворимых ферментов как технологических катализаторов. Более того, появляется возможность перевода многих периодических ферментативных процессов на непрерывный режим, используя колонны или проточные аппараты с иммобилизованными ферментами.
Иммобилизованные ферменты оказались в целом значительно более устойчивыми к внешним воздействиям, чем растворимые ферменты. Таким образом, возникли перспективы преодоления и второго недостатка биокатализаторов – их лабильности.
Принцип иммобилизации был применен не только к ферментам, но и к их субстратам, ингибиторам и кофакторам, т.е. веществам, имеющим избирательное сродство к ферментам. Это позволило создать метод выделения и очистки ферментов, основанный на хроматографии по сродству, или аффинной хроматографии. Тем самым существенно облегчилось выделение чистых ферментов.
Благодаря высокой активности и специфичности некоторые ферменты уже давно нашли применение в ряде областей промышленности (табл. 1.1). В основном это пищевая промышленность, где применяются главным образом комплексные ферментные препараты для гидролиза природных полимеров – белков, крахмала, пектинов.
Таблица 1.1.1
Примеры использования ферментов в промышленности
Ферменты | Области использования |
-амилаза | Гидролиз крахмала |
Обработка текстильных изделий | |
Глюкоамилаза | Получение глюкозы |
Осахаривание лекарств и пива | |
Инвертаза | Производство кондитерских изделий |
Пектиназа | Осветление вин и фруктовых соков |
Целлюлаза | Обработка соломы |
Протеазы микробного происхождения | Добавки к детергентам |
Хлебопечение | |
Осветление вин и пива | |
Размягчение мяса | |
Выделка кож | |
Бромелаин | Производство питательных смесей на основе гидролизатов белков |
Размягчение мяса | |
Папаин | Осветление пива |
Размягчение мяса | |
Трипсин | Выделка кож |
Реннин | Сыроделие |
Липазы | Модификация вкуса молочных продуктов |
Глюкозооксидаза | Удаление кислорода из пищевых продуктов |
Каталаза | Удаление пероксида водорода после стерилизации молочных продуктов |
Глюкозоизомераза | Производство глюкозо-фруктозных сиропов |
Применение иммобилизованных ферментов и белков в медицине открывают новые перспективы создания эффективных лекарственных средств. Ферменты, закрепленные на носителях или модифицированные полимерами, зачастую снижают свою антигенность из-за уменьшения доступности их для рецепторов иммунной системы. На принципах иммобилизации физиологически активных соединений базируется приготовление ферментных препаратов типа «контейнер» и других, обладающих повышенным терапевтическим эффектом.
Интересные возможности были обнаружены при использовании ферментов для повышения чувствительности иммунохимических методов анализа. Сущность любого иммунохимического анализа сводится к тому, чтобы после завершения реакции антиген-антитело определить концентрацию избыточного компонента (антигена или антитела), не вступившего в реакцию. Поскольку эти концентрации очень невысоки (10-12 – 10-8 моль/л), для их обнаружения обычно применяют легко детектируемую метку радиоактивным атомом, вводимым в один из компонентов (радиоактивный йод, тритий). Оказалось, что без потери чувствительности метода радиоактивная метка может быть заменена присоединением фермента, который после реакции обнаруживается по его каталитической активности. С помощью иммуноферментного анализа могут быть детектированы любые вещества, обладающие свойствами антигенов и, естественно, многочисленные возбудители заболеваний человека, животных, растений. Многие из этих методов могут быть приспособлены к автоматическому режиму слежения, что важно для решения задач экологии, контроля технологических производств и т.д.
- Учебное пособие
- Раздел 1. Структура и свойства ферментов
- Инженерная энзимология. Иммобилизованные ферменты. Новые пути практического использования ферментов. Применение ферментов в промышленности, сельском хозяйстве, медицине
- Принцип классификации ферментов. Классы ферментов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Основные положения систематической и тривиальной номенклатуры ферментов
- Способы количественного выражения активности ферментов. Единицы активности. Удельная и молекулярная активность
- Методы определения активности ферментов: колориметрический, спектрофотометрический, флуориметрический, манометрический, биолюминесцентный и др.
- Прямой и непрямой оптический тест Варбурга. Расчет ферментативной активности при определении по конечной точке и при кинетическом определении
- Лекция 1.2 выделение и очистка ферментов
- Разрушение клеток и экстракция белков
- Тепловая денатурация
- Осаждение белков
- Гель-фильтрация
- Разделение белков путем адсорбции
- Выбор ионообменника
- Элюция адсорбированного белка
- Аффинная хроматография
- Гидрофобная хроматография
- Металлохелатная аффинная хроматография
- Высокоэффективная жидкостная хроматография
- Электрофорез
- Изоэлектрическое фокусирование
- Капиллярный электрофорез
- Двумерные системы электрофореза
- Кристаллизация белков
- Лекция 1.3 уровни структурной организации ферментов
- Многостадийный процесс образования пространственной структуры белка
- Механизмы регуляции процесса сворачивания полипептидной цепи внутри клетки
- Ферменты, участвующие в фолдинге белка
- Специальные белки, увеличивающие эффективность сворачивания полипептидной цепи в нативную конформацию
- Посттрансляционная модификация белка
- Роль доменов в пространственной организации молекул ферментов
- Увеличение числа доменов в ферменте и усложнение взаимодействий между ними
- Роль доменов в формирование активного центра фермента
- Роль доменов в регуляции ферментативной активности
- Роль доменов в связывание ферментов с мембранами
- Полифункциональные ферменты
- Бифункциональные ферменты, катализирующие реакции одного метаболического пути
- Бифункциональные ферменты, катализирующие противоположно направленные реакции
- Лекция 1.4 Кофакторы ферментов и их роль в катализе Коферменты, простетические группы, ионы металлов
- Классификация кофакторов
- Функции кофакторов
- Кофакторы окислительно-восстановительных процессов Никотинамидные кофакторы
- Кофакторы переноса групп Коферменты – производные пиридоксина
- Кофакторы процессов синтеза, изомеризации и расщепления с-с связей Биотин
- Роль металлов в функционировании ферментов
- Лекция 1.5. Топография активных центров простых и сложных ферментов
- Методы изучения активных центров ферментов
- Раздел 2. Кинетика и термодинамика
- Ферментативных реакций
- Лекция 2.1.
- Кинетика химических реакций
- Скорость химической реакции
- Основной постулат химической кинетики ‒ закон действия масс
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Реакции третьего порядка
- Уравнения односторонних реакций 0-го, 1-го и 2-ого порядка
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Молекулярность элементарных реакций
- Методы определения порядка реакции
- Зависимость скорости реакции от температуры. Уравнения Вант-Гоффа и Аррениуса.
- Катализ
- Лекция 2.2. Стационарная кинетика ферментативный реакций
- Уравнение Михаэлиса-Ментен
- Характеристика кинетических констант
- Методы определения Км и Vmax
- Лекция 2.3. Ингибиторы ферментов.
- Конкурентное ингибирование
- Неконкурентное ингибирование
- Бесконкурентное ингибирование
- Смешанный тип ингибирования
- Субстратное ингибирование
- Методы определения константы ингибирования. Метод Диксона
- Лекция 2.4 Ферменты, не подчиняющиеся кинетике Михаэлиса-Ментен
- Методы определения коэффициента Хилла
- Раздел 3.Механизмы ферментативного катализа
- Сущность явления катализа
- Стадии образования фермент-субстратного комплекса
- Природа сил, стабилизирующих различные конформационные состояния ферментсубстратного комплекса
- Электростатические взаимодействия
- Водородные связи
- Вандерваальсовы взаимодействия
- Гидрофобные взаимодействия
- Факторы, определяющие эффективность и специфичность ферментативного катализа
- Физико-химические механизмы ферментативного катализа
- Лекция 3.2
- Механизм действия гидролаз на примере карбоксипептидазы а
- Связывание субстрата карбоксипептидазой а
- Работы Липскомба с сотрудниками по установлению молекулярного механизма действия кпа
- Методы для изучения механизма действия ферментов
- Лекция 3.3 Специфичность – уникальное свойство ферментов
- Относительная или групповая специфичность действия
- Абсолютная специфичность действия
- Стереоспецифичность ферментов
- Концепция стерического соответствия «ключ-замок»
- Концепция индуцированного соответствия
- Раздел 4. Контроль активности ферментов лекция 4.1. Ферменты в клетке и организованных системах
- Распределение ферментов в клетке
- Ферменты, присутствующие в ядре
- Ферменты митохондрий
- Лизосомальные ферменты
- Ферменты эндоплазматического ретикулума
- Ферменты, локализованные в цитозоле
- Мембранные ферменты
- Уровни структурной организации ферментов в клетке
- Мультиферментные комплексы
- Пируватдегидрогеназный комплекс
- Мультиферментные конъюгаты
- Метаболоны
- Лекция 4.2 Изостерические и аллостерические механизмы регуляции активности ферментов
- Изостерическая регуляция
- Изоферменты
- Лекция 4.3 ковалентная модификация ферментов и ее типы
- Лекция 4.4
- Регуляция количества ферментов в клетке
- Контроль количества ферментов в клетке – процесс, зависящий от соотношения скоростей их биосинтеза и деградации.
- Время полужизни различных ферментов
- Фермент
- Аминокислоты
- Биосинтез ферментов и его регуляция на генетическом уровне. Конститутивные и индуцибельные (адаптивные) ферменты. Репрессия и индукция биосинтеза ферментов
- Убиквитин-протеосомный путь деградации белков у эукариот. Убиквитин – белок, маркирующий белки для деградации. Строение 26s протеосомы
- Раздел 5. Прикладное значение ферментов лекция 5.1. Генетическая инженерия ферментов
- Использование рекомбинантных ферментов
- Лекция 5.2 Ферменты в медицине (часть I)
- Энзимодиагностика Органная специфичность в распределении ферментов
- Ферменты сыворотки крови
- Факторы, влияющие на уровень ферментов во внеклеточной жидкости
- Диагностическое значение снижения ферментативной активности
- Неспецифическое повышение ферментативной активности
- Применение ферментов в качестве аналитических реагентов
- Лактатдегидрогеназа
- Лекция 5.3 Ферменты в медицине (часть II) Энзимопатии
- Врождённые (наследственные) энзимопатии
- Механизм возникновения наследственных энзимопатий
- Блок обмена веществ
- Примеры наследственных энзимопатий
- Приобретённые энзимопатии
- Энзимотерапия Использование ферментов в качестве лекарственных препаратов
- Использование ингибиторов ферментов в качестве лекарственных препаратов
- Библиографический список