Прямой и непрямой оптический тест Варбурга. Расчет ферментативной активности при определении по конечной точке и при кинетическом определении
В биохимии фотометрические измерения в большинстве случаев проводятся непосредственно при протекании биохимических реакций, в процессе которых потребляются субстраты, повышается концентрация продуктов реакций или меняются кофакторы реакций. Одним из самых распространенным оптических тестов является тест Варбурга, основанный на том, что один из продуктов дегидрогеназной реакции – восстановленная форма никотинамидадениндинуклеотид или его фосфат (NADH или NADPH) – имеет максимум поглощения при длине волны 340 нм, а их окисленные формы при этой длине волны практически не поглощают (рис. 1.1.1).
Рис. 1.1.1. Спектры поглощении NAD+ (1) и NADН (2). Восстановление NAD+ до NADН прослеживается при 340 нм – максимуме поглощения NADН, при котором NAD+ не поглощает
Тест может быть использован для определения скоростей тех реакций, в которых не участвуют NAD+ или NADP+, но образующиеся продукты посредством других ферментативных реакций приводят к окислению NADH или восстановлению NAD+ (непрямой оптический тест Варбурга). При кинетическом определении вычисляют изменение поглощения за 1 мин и рассчитывают активность по формуле:
, где
А – активность фермента, измеряемая в международных единицах (МЕ или Ед или U). Каталитическая активность фермента выражается числом единиц, рассчитанных для 1 литра биологической жидкости (Ед/л).
V – объем реакционной смеси, мл;
1000 – коэффициент перерасчета миллимоль в микромоль;
l – длина оптического пути (1 см)
– миллимолярный показатель поглощения NADH в реакции 6,22 л/(ммоль см);
– объем пробы (сыворотки крови или другого материала), мл;
D/t – изменение оптической плотности за 1 мин.
Реакция, сопровождающаяся изменением фотометрического сигнала, развивается за некоторый период времени и достигает определенного конечного состояния, так называемой конечной точки. Изменение сигнала, как функция времени, представлено на рис. 1.1.2.
Рис. 1.1.2. Измерение по конечной точке. Стрелками показаны моменты внесения буфера, реактива и биологической пробы
При измерении по конечной точке уровень сигнала соответствует количеству продуктов реакции в инкубационной среде после фиксированного времени инкубации. Поглощение измеряется после окончания реакции при стабильном значении сигнала.
Существует несколько схем измерения по конечной точке.
При работе на 2-х лучевом фотометре измерение ведется в режиме сравнения растворов в двух кюветах. В каждую кюветы вносится одинаковое количество реактива, затем в 1 кювету вносится с биопроба с известной концентрацией и получают стандартный раствор с известной концентрацией исследуемого вещества, а в другую кювету помещают количество воды или физиологического раствора, равное количеству биопробы, и получают таким образом опорный раствор (бланк).
Двухлучевая схема фотометрирования предусматривает автоматическое вычитание бланка, при этом фотоэлектрический сигнал бланка (оптическая плотность) принимается за нулевой отсчет оптической плотности, относительно которой и проводится 1-точечное измерение. Пример изменения сигнала при построении калибровочной кривой при измерении по конечной точке представлен на рис. 1.1.3. Измерение проводится по методу 1-точечного измерения (1 -point assay).
Рис. 1.1.3. 1-Точечное измерение. Сигнал развивается как функция времени для 6 стандартов. Исходная точка – нуль. Концентрация каждого стандарта измеряется 1 раз по конечной точке (по достижении стационарного уровня)
Кинетическое измерение подразумевает определение меняющейся в ходе реакции оптической плотности. Наиболее широко кинетическое измерение используется для определения активности ферментов, хотя в последнее время разработано достаточно много методов определения концентрации субстратов в период кинетического протекания реакций. Кинетическое измерение требует, наряду с соответствующим фотометрическим оборудованием, также точного поддержания температуры в измерительной кювете и правильного отсчета временных интервалов. Так, общепринятым считается поддержание температуры в измерительной ячейке в пределах ± 0,2° С. Эти условия являются обязательными для кинетических методов и доступны только при использовании современных фотометров и биохимических анализаторов. Что касается абсолютного значения температуры, то для определения активности ферментов используются 25°С, 30°С и 37°С. Температура 25°С является стандартной в физической химии, поэтому эта температура была предложена Комиссией по ферментам международного Союза по ферментам в 1961 г. В 1964 г. было предложено использовать 30°С, что связано с климатическими особенностями ряда стран и мнением о наибольшей стабильности результатов по определению активности ферментов при этой температуре. Однако в настоящее время большинство измерений в биохимических анализаторах проводится при 37°С.
Протекание кинетических реакций неоднозначное. На рис. 1.1.4 представлены типичные варианты протекания кинетических реакций. Существует несколько схем кинетического измерения.
Рис. 1.1.4. Скорость ферментативной реакции как функция времени. А – скорость постоянна в течение всего периода измерения, в любой период можно по скорости реакции оценивать активность фермента; Б – скорость реакции постоянно снижается, рекомендуется активность фермента оценивать по начальной скорости; В – линейный участок, в течение которого рекомендуется определять активность фермента, устанавливается в середине периода инкубации
В случае постоянной скорости кинетической реакции (рис. 1.1.4, А) измерение можно проводить на любом отрезке линейной кривой, приводя измерение поглощения к I минуте. Расчет ведут по формуле:
Достоинством данного способа является простота, возможность измерения без использования стандарта, а также независимость в пределах линейного диапазона плотностей от влияний системных интерферирующих факторов. Кинетический способ измерения допустим при использовании вымытых пластиковых кювет, которые предназначены для разового использования в биохимических анализаторах, так как оптическая плотность меняется на определенное значение в любой промежуток времени и не зависит от величины оптической плотности холостой пробы. Однако необходимо убедиться, что измерение проводится в линейном диапазоне протекания кинетической реакции.
Двухточечное измерение потенциально включает возможность нескольких методических ошибок. Если реакция начинается с очень высокой скоростью, то она может замедлиться или вообще прекратиться из-за потребления всего количества субстрата. Выявить такую погрешность при 2-х точечном измерении не представляется возможным. На ошибку указывает несоответствие результатов биохимического исследования клиническим данным. Реакция вообще может иметь нелинейный характер.
Реакция может задержаться на старте (Lag фаза в мультиферментных тестах, рис. 1.1.4, В). Наличие Lag фазы, как правило, объясняют выравниванием температуры и задержкой для равномерного перемешивания пробы с реактивом, однако основное значение имеет, по-видимому, задержка для образования комплекса субстрата [S] с ферментом [Е], поэтому Lag фаза может продолжаться до нескольких минут. При кинетических исследованиях существенное значение имеет порядок внесения реактивов. Считается правильным для лучшего перемешивания реактив большего объема добавлять к меньшему объему, в измерительную кювету сначала вносится биопроба (меньший объем), а затем рабочий реактив (больший объем), то есть, стартуют реактивом.
В биохимии для измерений, в которых регистрируется более 2 точек, принят термин “кинетическое” измерение, хотя 2-х точечное измерение также кинетическое. Непрерывное (многоточечное) измерение оптической плотности в ходе реакции позволяет оценивать характер кинетики и выбирать для расчетов линейный участок кривой. Многократное измерение прироста концентрации продукта реакции (снижения субстрата, либо изменения состояния кофермента) считается наиболее точным методом определения активности ферментов. Изменение оптического поглощения в этом случае должно быть одинаковым за равные промежутки времени (допуск отклонений от линейности не должен превышать 10 %).
- Учебное пособие
- Раздел 1. Структура и свойства ферментов
- Инженерная энзимология. Иммобилизованные ферменты. Новые пути практического использования ферментов. Применение ферментов в промышленности, сельском хозяйстве, медицине
- Принцип классификации ферментов. Классы ферментов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Основные положения систематической и тривиальной номенклатуры ферментов
- Способы количественного выражения активности ферментов. Единицы активности. Удельная и молекулярная активность
- Методы определения активности ферментов: колориметрический, спектрофотометрический, флуориметрический, манометрический, биолюминесцентный и др.
- Прямой и непрямой оптический тест Варбурга. Расчет ферментативной активности при определении по конечной точке и при кинетическом определении
- Лекция 1.2 выделение и очистка ферментов
- Разрушение клеток и экстракция белков
- Тепловая денатурация
- Осаждение белков
- Гель-фильтрация
- Разделение белков путем адсорбции
- Выбор ионообменника
- Элюция адсорбированного белка
- Аффинная хроматография
- Гидрофобная хроматография
- Металлохелатная аффинная хроматография
- Высокоэффективная жидкостная хроматография
- Электрофорез
- Изоэлектрическое фокусирование
- Капиллярный электрофорез
- Двумерные системы электрофореза
- Кристаллизация белков
- Лекция 1.3 уровни структурной организации ферментов
- Многостадийный процесс образования пространственной структуры белка
- Механизмы регуляции процесса сворачивания полипептидной цепи внутри клетки
- Ферменты, участвующие в фолдинге белка
- Специальные белки, увеличивающие эффективность сворачивания полипептидной цепи в нативную конформацию
- Посттрансляционная модификация белка
- Роль доменов в пространственной организации молекул ферментов
- Увеличение числа доменов в ферменте и усложнение взаимодействий между ними
- Роль доменов в формирование активного центра фермента
- Роль доменов в регуляции ферментативной активности
- Роль доменов в связывание ферментов с мембранами
- Полифункциональные ферменты
- Бифункциональные ферменты, катализирующие реакции одного метаболического пути
- Бифункциональные ферменты, катализирующие противоположно направленные реакции
- Лекция 1.4 Кофакторы ферментов и их роль в катализе Коферменты, простетические группы, ионы металлов
- Классификация кофакторов
- Функции кофакторов
- Кофакторы окислительно-восстановительных процессов Никотинамидные кофакторы
- Кофакторы переноса групп Коферменты – производные пиридоксина
- Кофакторы процессов синтеза, изомеризации и расщепления с-с связей Биотин
- Роль металлов в функционировании ферментов
- Лекция 1.5. Топография активных центров простых и сложных ферментов
- Методы изучения активных центров ферментов
- Раздел 2. Кинетика и термодинамика
- Ферментативных реакций
- Лекция 2.1.
- Кинетика химических реакций
- Скорость химической реакции
- Основной постулат химической кинетики ‒ закон действия масс
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Реакции третьего порядка
- Уравнения односторонних реакций 0-го, 1-го и 2-ого порядка
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Молекулярность элементарных реакций
- Методы определения порядка реакции
- Зависимость скорости реакции от температуры. Уравнения Вант-Гоффа и Аррениуса.
- Катализ
- Лекция 2.2. Стационарная кинетика ферментативный реакций
- Уравнение Михаэлиса-Ментен
- Характеристика кинетических констант
- Методы определения Км и Vmax
- Лекция 2.3. Ингибиторы ферментов.
- Конкурентное ингибирование
- Неконкурентное ингибирование
- Бесконкурентное ингибирование
- Смешанный тип ингибирования
- Субстратное ингибирование
- Методы определения константы ингибирования. Метод Диксона
- Лекция 2.4 Ферменты, не подчиняющиеся кинетике Михаэлиса-Ментен
- Методы определения коэффициента Хилла
- Раздел 3.Механизмы ферментативного катализа
- Сущность явления катализа
- Стадии образования фермент-субстратного комплекса
- Природа сил, стабилизирующих различные конформационные состояния ферментсубстратного комплекса
- Электростатические взаимодействия
- Водородные связи
- Вандерваальсовы взаимодействия
- Гидрофобные взаимодействия
- Факторы, определяющие эффективность и специфичность ферментативного катализа
- Физико-химические механизмы ферментативного катализа
- Лекция 3.2
- Механизм действия гидролаз на примере карбоксипептидазы а
- Связывание субстрата карбоксипептидазой а
- Работы Липскомба с сотрудниками по установлению молекулярного механизма действия кпа
- Методы для изучения механизма действия ферментов
- Лекция 3.3 Специфичность – уникальное свойство ферментов
- Относительная или групповая специфичность действия
- Абсолютная специфичность действия
- Стереоспецифичность ферментов
- Концепция стерического соответствия «ключ-замок»
- Концепция индуцированного соответствия
- Раздел 4. Контроль активности ферментов лекция 4.1. Ферменты в клетке и организованных системах
- Распределение ферментов в клетке
- Ферменты, присутствующие в ядре
- Ферменты митохондрий
- Лизосомальные ферменты
- Ферменты эндоплазматического ретикулума
- Ферменты, локализованные в цитозоле
- Мембранные ферменты
- Уровни структурной организации ферментов в клетке
- Мультиферментные комплексы
- Пируватдегидрогеназный комплекс
- Мультиферментные конъюгаты
- Метаболоны
- Лекция 4.2 Изостерические и аллостерические механизмы регуляции активности ферментов
- Изостерическая регуляция
- Изоферменты
- Лекция 4.3 ковалентная модификация ферментов и ее типы
- Лекция 4.4
- Регуляция количества ферментов в клетке
- Контроль количества ферментов в клетке – процесс, зависящий от соотношения скоростей их биосинтеза и деградации.
- Время полужизни различных ферментов
- Фермент
- Аминокислоты
- Биосинтез ферментов и его регуляция на генетическом уровне. Конститутивные и индуцибельные (адаптивные) ферменты. Репрессия и индукция биосинтеза ферментов
- Убиквитин-протеосомный путь деградации белков у эукариот. Убиквитин – белок, маркирующий белки для деградации. Строение 26s протеосомы
- Раздел 5. Прикладное значение ферментов лекция 5.1. Генетическая инженерия ферментов
- Использование рекомбинантных ферментов
- Лекция 5.2 Ферменты в медицине (часть I)
- Энзимодиагностика Органная специфичность в распределении ферментов
- Ферменты сыворотки крови
- Факторы, влияющие на уровень ферментов во внеклеточной жидкости
- Диагностическое значение снижения ферментативной активности
- Неспецифическое повышение ферментативной активности
- Применение ферментов в качестве аналитических реагентов
- Лактатдегидрогеназа
- Лекция 5.3 Ферменты в медицине (часть II) Энзимопатии
- Врождённые (наследственные) энзимопатии
- Механизм возникновения наследственных энзимопатий
- Блок обмена веществ
- Примеры наследственных энзимопатий
- Приобретённые энзимопатии
- Энзимотерапия Использование ферментов в качестве лекарственных препаратов
- Использование ингибиторов ферментов в качестве лекарственных препаратов
- Библиографический список