Лекция 3.2
Механизм действия гидролаз
на примере карбоксипептидазы А
Деление гидролаз на типы
по механизму действия и строению активного центра
Гидролазы – это третий класс ферментов. Сюда относятся многие ферменты, имеющие промышленное значение, и большинство пищеварительных ферментов. Общим свойством всех гидролаз является то, что они катализируют реакции гидролиза, то есть расщепление более сложных соединений на более простые с присоединением воды. К классу гидролаз относятся также протеолитические ферменты (подкласс 3.4), катализирующие гидролиз пептидов и белков и имеющие большое значение в теоретической энзимологии и в практике применения ферментных препаратов. Согласно современной номенклатуре и классификации ферментов, протеолитические ферменты принадлежат к подклассу пептидаз – гидролаз и по механизму действия делятся на 4 типа:
1. Аминопептидазы (3.4.1; α-аминоацилпептид – гидролазы). Отличительной чертой этих ферментов является то, что для их действия необходимо наличие в молекуле субстрата свободной α-аминной группы (например, лейцинаминопептидаза, аминотрипептидаза и др.);
2. Карбоксипептидазы (3.4.2; пептидил-аминокислотные гидролазы). Как показывает само название, для действия фермента необходимо наличие в молекуле субстрата свободной карбоксильной группы (например, карбоксипептидаз А, карбоксипептидаза В и др.);
3. Дипептидазы (3.4.3; дипептид – гидролазы). Согласно современным данным, существование дипептидаз, действующих на многие дипептиды, кажется весьма сомнительным. В то же время в различных объектах обнаружены дипептидазы с весьма высокой специфичностью. Таковы, например, глицилглицин-дипептидаза, иминодипептидаза, имидодипептидаза.
4. Протеиназы (3.4.4; пептидил-пептид – гидролазы). Сюда относятся ферменты, составляющие по классификации М. Бергманна группу эндопептидаз. Эндонептидазы, в отличие от экзопептидаз, способны гидролизовать не только концевые пептидные связи, но и связи, расположенные внутри белковых молекул. В эту группу входит ряд хорошо изученных ферментов, имеющих большое практическое значение (например, пепсин, трипсин идр.).
Многие протеолитические ферменты образуются в виде «зимогенов» – неактивных предшественников. Таковы пепсин, реннин, химотрипсин, трипсин, тромбин, карбоксипептидаза. За последние годы достигнуты большие успехи в изучении процесса активации – превращения предшественников (зимогенов) в активные ферменты. Установлено, что в основе процесса активации лежит так называемый ограниченный протеолиз (см. лекцию 4.1).
Синтез протеиназ в неактивной форме и ряда других неактивных белков-предшественников имеет, очевидно, определенный биологический смысл, предотвращая разрушение клеток органов, в которых образуются проферменты. Примерами подобного активирования белков является активирование некоторых гормонов (проинсулин → инсулин), белка соединительной ткани (растворимый проколлаген → в нерастворимый коллаген), белков свертывающей системы крови.
Большой интерес представляет строение активного центра протеолитических ферментов. В зависимости от строения активного центра протеолитические ферменты можно разделить на три группы. Первая группа включает ферменты, не требующие присутствия активаторов; сюда относятся трипсин, химотрипсин, пепсин. Вторая группа включает энзимы, которые требуют активации такими веществами, как цистеин, глютатион, аскорбиновая кислота, цианид; сюда относятся некоторые катепсины, папаин, фицин. Третью группу составляют энзимы – металлопротеины. Активность этихферментов сильно увеличивается в присутствии ионов металллов, таких, как Mn2+, Mg2+, Zn2+, Со2+ и др. Первая группа протеаз может быть разделена на две подгруппы. К первой подгруппе относятся ферменты, действующие в кислой зоне рН (пепсин, реннин) о строении их активных центров известно сравнительно немного. Есть данные, что для каталитического действия пепсина большое значение имеют остатки тирозина и аспарагиновой кислоты. Ко второй подгруппе относятся ферменты, имеющие оптимум рН в щелочной зоне и составляющие группу так называемых «сериновых» протеаз (трипсин, химотрипсин, тромбин, панкреатопептидаза Е, субтилопептидаза).
- Учебное пособие
- Раздел 1. Структура и свойства ферментов
- Инженерная энзимология. Иммобилизованные ферменты. Новые пути практического использования ферментов. Применение ферментов в промышленности, сельском хозяйстве, медицине
- Принцип классификации ферментов. Классы ферментов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Основные положения систематической и тривиальной номенклатуры ферментов
- Способы количественного выражения активности ферментов. Единицы активности. Удельная и молекулярная активность
- Методы определения активности ферментов: колориметрический, спектрофотометрический, флуориметрический, манометрический, биолюминесцентный и др.
- Прямой и непрямой оптический тест Варбурга. Расчет ферментативной активности при определении по конечной точке и при кинетическом определении
- Лекция 1.2 выделение и очистка ферментов
- Разрушение клеток и экстракция белков
- Тепловая денатурация
- Осаждение белков
- Гель-фильтрация
- Разделение белков путем адсорбции
- Выбор ионообменника
- Элюция адсорбированного белка
- Аффинная хроматография
- Гидрофобная хроматография
- Металлохелатная аффинная хроматография
- Высокоэффективная жидкостная хроматография
- Электрофорез
- Изоэлектрическое фокусирование
- Капиллярный электрофорез
- Двумерные системы электрофореза
- Кристаллизация белков
- Лекция 1.3 уровни структурной организации ферментов
- Многостадийный процесс образования пространственной структуры белка
- Механизмы регуляции процесса сворачивания полипептидной цепи внутри клетки
- Ферменты, участвующие в фолдинге белка
- Специальные белки, увеличивающие эффективность сворачивания полипептидной цепи в нативную конформацию
- Посттрансляционная модификация белка
- Роль доменов в пространственной организации молекул ферментов
- Увеличение числа доменов в ферменте и усложнение взаимодействий между ними
- Роль доменов в формирование активного центра фермента
- Роль доменов в регуляции ферментативной активности
- Роль доменов в связывание ферментов с мембранами
- Полифункциональные ферменты
- Бифункциональные ферменты, катализирующие реакции одного метаболического пути
- Бифункциональные ферменты, катализирующие противоположно направленные реакции
- Лекция 1.4 Кофакторы ферментов и их роль в катализе Коферменты, простетические группы, ионы металлов
- Классификация кофакторов
- Функции кофакторов
- Кофакторы окислительно-восстановительных процессов Никотинамидные кофакторы
- Кофакторы переноса групп Коферменты – производные пиридоксина
- Кофакторы процессов синтеза, изомеризации и расщепления с-с связей Биотин
- Роль металлов в функционировании ферментов
- Лекция 1.5. Топография активных центров простых и сложных ферментов
- Методы изучения активных центров ферментов
- Раздел 2. Кинетика и термодинамика
- Ферментативных реакций
- Лекция 2.1.
- Кинетика химических реакций
- Скорость химической реакции
- Основной постулат химической кинетики ‒ закон действия масс
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Реакции третьего порядка
- Уравнения односторонних реакций 0-го, 1-го и 2-ого порядка
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Молекулярность элементарных реакций
- Методы определения порядка реакции
- Зависимость скорости реакции от температуры. Уравнения Вант-Гоффа и Аррениуса.
- Катализ
- Лекция 2.2. Стационарная кинетика ферментативный реакций
- Уравнение Михаэлиса-Ментен
- Характеристика кинетических констант
- Методы определения Км и Vmax
- Лекция 2.3. Ингибиторы ферментов.
- Конкурентное ингибирование
- Неконкурентное ингибирование
- Бесконкурентное ингибирование
- Смешанный тип ингибирования
- Субстратное ингибирование
- Методы определения константы ингибирования. Метод Диксона
- Лекция 2.4 Ферменты, не подчиняющиеся кинетике Михаэлиса-Ментен
- Методы определения коэффициента Хилла
- Раздел 3.Механизмы ферментативного катализа
- Сущность явления катализа
- Стадии образования фермент-субстратного комплекса
- Природа сил, стабилизирующих различные конформационные состояния ферментсубстратного комплекса
- Электростатические взаимодействия
- Водородные связи
- Вандерваальсовы взаимодействия
- Гидрофобные взаимодействия
- Факторы, определяющие эффективность и специфичность ферментативного катализа
- Физико-химические механизмы ферментативного катализа
- Лекция 3.2
- Механизм действия гидролаз на примере карбоксипептидазы а
- Связывание субстрата карбоксипептидазой а
- Работы Липскомба с сотрудниками по установлению молекулярного механизма действия кпа
- Методы для изучения механизма действия ферментов
- Лекция 3.3 Специфичность – уникальное свойство ферментов
- Относительная или групповая специфичность действия
- Абсолютная специфичность действия
- Стереоспецифичность ферментов
- Концепция стерического соответствия «ключ-замок»
- Концепция индуцированного соответствия
- Раздел 4. Контроль активности ферментов лекция 4.1. Ферменты в клетке и организованных системах
- Распределение ферментов в клетке
- Ферменты, присутствующие в ядре
- Ферменты митохондрий
- Лизосомальные ферменты
- Ферменты эндоплазматического ретикулума
- Ферменты, локализованные в цитозоле
- Мембранные ферменты
- Уровни структурной организации ферментов в клетке
- Мультиферментные комплексы
- Пируватдегидрогеназный комплекс
- Мультиферментные конъюгаты
- Метаболоны
- Лекция 4.2 Изостерические и аллостерические механизмы регуляции активности ферментов
- Изостерическая регуляция
- Изоферменты
- Лекция 4.3 ковалентная модификация ферментов и ее типы
- Лекция 4.4
- Регуляция количества ферментов в клетке
- Контроль количества ферментов в клетке – процесс, зависящий от соотношения скоростей их биосинтеза и деградации.
- Время полужизни различных ферментов
- Фермент
- Аминокислоты
- Биосинтез ферментов и его регуляция на генетическом уровне. Конститутивные и индуцибельные (адаптивные) ферменты. Репрессия и индукция биосинтеза ферментов
- Убиквитин-протеосомный путь деградации белков у эукариот. Убиквитин – белок, маркирующий белки для деградации. Строение 26s протеосомы
- Раздел 5. Прикладное значение ферментов лекция 5.1. Генетическая инженерия ферментов
- Использование рекомбинантных ферментов
- Лекция 5.2 Ферменты в медицине (часть I)
- Энзимодиагностика Органная специфичность в распределении ферментов
- Ферменты сыворотки крови
- Факторы, влияющие на уровень ферментов во внеклеточной жидкости
- Диагностическое значение снижения ферментативной активности
- Неспецифическое повышение ферментативной активности
- Применение ферментов в качестве аналитических реагентов
- Лактатдегидрогеназа
- Лекция 5.3 Ферменты в медицине (часть II) Энзимопатии
- Врождённые (наследственные) энзимопатии
- Механизм возникновения наследственных энзимопатий
- Блок обмена веществ
- Примеры наследственных энзимопатий
- Приобретённые энзимопатии
- Энзимотерапия Использование ферментов в качестве лекарственных препаратов
- Использование ингибиторов ферментов в качестве лекарственных препаратов
- Библиографический список