Убиквитин-протеосомный путь деградации белков у эукариот. Убиквитин – белок, маркирующий белки для деградации. Строение 26s протеосомы
В цитозоле эукариот селективную деградацию белков осуществляют большие мультикаталитические комплексы с мол. массой около 2 млн., называемые 26S-протеасомами (то есть протеиназами, являющимися крупными частицами – “сомами”). Мишенями 26S-протеасом являются белки, вовлеченные во многие внутриклеточные процессы (регуляция метаболизма, дифференцировка клеток, контроль клеточного цикла, ответ на стресс и др.) или дефектные белки, возникающие в результате мутаций или посттрансляционных повреждений. При этом белки-мишени предварительно подвергаются модификации небольшим белком – убиквитином, состоящим из 76 а.о. 26S-протеасома – это сложный комплекс (рис. 4.4.3), образованный 20S-протеасомой, играющей роль протеолитического ядра, и двумя регуляторными комплексами, так называемыми активаторами протеасомы Р700 (или 19S-комплексами), которые обеспечивают проявление ферментативной активности и определяют субстратную специфичность 26S-комплекса.
Центральная часть 26S-протеасомы 20S-протеасома представляет собой цилиндрическую частицу, которая состоит из четырех семичленных колец. Кольца расположены друг над другом и формируют обширную внутреннюю полость. 20S-протеасомы эукариот содержат более десяти различных типов субъединиц, которые делятся на два семейства ( и ). Наружные кольца образованы -субъединицами, а внутренние – -субъединицами.
In vitro 20S-протеасома обладает широким спектром пептидгидролазной активности. Каждое кольцо из семи -субъединиц содержит три активных центра, проявляющих различную первичную специфичность: химотрипсино-, трипсино- и каспазоподобную, т.е. в белках-мишенях атакуются пептидные связи, образованные, соответственно, гидрофобными, положительно заряженными или дикарбоновыми аминокислотами. При этом каталитически активным остатком каждого из активных центров является N-концевой остаток треонина – Thr1 (так же, как это было установлено для HslUV-протеиназы).
Протеасома осуществляет процессивную деградацию белковых субстратов с образованием пептидных продуктов размером от 3 до 22 а.о. В последнее время обнаружен феномен аллостерической взаиморегуляции активных центров, обладающих различной специфичностью. Функционирует ли 20S-протеасома in vivo – неизвестно.
Рис. 4.4.3. Строение и сборка 26S-протеасомы.
26S-протеасома образуется при АТР-зависимой ассоциации 20S-протеасомы и регуляторного 19S-комплекса, включающего около 20 различных субъединиц. Этот комплекс обладает АТРазной активностью и выполняет функции селективного распознавания субстратов и взаимодействия с ними, активации пептидазной активности 20S-комплекса, обеспечения сборки полного 26S-комплекса и др. 19S-комплекс содержит, по крайней мере, 6 различных АТРазных субъединиц, которые принадлежат к белкам ААА-типа (так же как и описанные выше Lon- и FtsH-протеиназы прокариот). Значение такого разнообразия АТРазных субъединиц и роль каждой из них не выяснены. Помимо АТРазных субъединиц 19S-комплекс содержит и другие субъединицы, не обладающие АТР-связывающей способностью. Роль этих субъединиц может заключаться в обеспечении взаимодействия с 20S-протеасомой и в ее активации, высвобождении полиубиквитиновых цепей и их гидролизе, поддержании структуры 26S-комплекса, взаимодействии с субстратами и их презентации 20S-протеасоме.
Процессу деградации белков протеасомой (рис. 4.4.4) предшествует селективная модификация мишеней путем ковалентного присоединения убиквитина. Сначала происходит активация С-концевого остатка глицина в молекуле убиквитина, катализируемая специфическим убиквитинактивирующим ферментом Е1, и связывание активированного убиквитина с убивитинпереносящим ферментом Е2. Затем при помощи убиквитинлигазы Е3 образуется изопептидная связь между С-концевым остатком глицина убиквитина и аминогруппой внутреннего остатка лизина белка-мишени.
Рис. 4.4.4. Убиквитин-зависимая деградация белков 26S-протеасомой.
Другая группа Е2-ферментов катализирует образование полиукбивитиновых цепей путем связывания каждой последующей молекулы убиквитина с e-аминогруппой остатка Lys48 предыдущей. И уже полиубиквитинилированные белки-мишени подвергаются быстрой деградации 26S-протеасомой, сопровождающейся отщеплением убиквитина. Все стадии этого процесса АТР-зависимы.
Фактически распознавание белка-мишени осуществляется убиквитин-лигазой – ферментом Е3, однако, по какому принципу происходит отбор мишени, до сих пор не ясно. В настоящее время предложено несколько вариантов так называемых сигналов, определяющих белки, подлежащие селективному протеолизу. Согласно N-концевому правилу скорость деградации белка зависит от природы его N-концевой аминокислоты, при этом одни аминокислоты считаются дестабилизирующими, а другие – стабилизирующими. Другой молекулярной детерминантой деградации белка считаются PEST-сигналы – фрагменты последовательности белка-мишени, обогащенные остатками пролина (P), глутаминовой кислоты (E), серина (S) и треонина (T). Обнаружено также два варианта специфических фрагментов последовательностей (обозначаемых как “destruction box” – RXALGXIXN и “destabilizing tail” – AANDENYALAA), являющихся сигналами деградации. Однако ни один из этих сигналов не носит обобщающего характера. Общие принципы селективного отбора субстратов еще не сформулированы, а может, они вообще не существуют.
Следует отметить, что, несмотря на более сложную организацию, 26S-протеасома обнаруживает некоторое структурное подобие с АТР-зависимыми протеиназами прокариот Clp-семейства. Действительно, структура ClpP и HslV подобна структуре внутреннего ядра из -субъединиц 20S-протеасомы, однако при этом только HslV проявляет сходство по первичной структуре с b-субъединицей. Методом электронной микроскопии показано (рис. 4.4.5), что Clp-протеиназы и 26S-протеасома имеют сходную архитектуру: центральный элемент обоих комплексов представляет двухкольцевую структуру с осью симметрии 7 порядка, фланкированную с двух сторон олигомерными АТРазными компонентами. Такое структурное сходство позволяет предполагать сходство в основных биохимических механизмах, посредством которых эти ферменты связывают, разворачивают и переносят белковые субстраты к протеолитическим активным центрам. Обладают ли функционально активные олигомеры Lon- и FtsH-протеиназ каким-либо структурным сходством с Clp-протеиназами и протеасомами, в настоящее время не известно, поскольку четвертичная структура их еще не определена.
Рис. 4.4.5. Сопоставление строения ClpAP-протеиназы и 26S-протеасомы.
Ферменты, родственные протеиназам ААА-семейства прокариот, также были сравнительно недавно обнаружены в митохондриях клеток эукариот – это Pim1-протеиназа (аналог Lon), m-AAA(Yta10h/Yta12p)-протеиназа и i-AAA(Yme1p)-протеиназа (обе – аналоги FtsH).
Протеиназа Pim1 участвует в формировании дыхательных комплексов в митохондриях, и в регулируемом протеолизе митохондриальных белков. m- и i-AAA-Протеиназы вовлечены в деградацию свободных продуктов митохондриальной трансляции во внутренней мембране и необходимы для формирования системы окислительного фосфорилирования.
Таким образом, селективный внутриклеточный протеолиз, осуществляемый олигомерными АТР-зависимыми протеиназами, обеспечивает контроль качества функциональных белков и поддержание необходимого уровня их в клетке. Несмотря на значительные успехи, достигнутые в исследовании энергозависимого протеолиза, многие его аспекты остаются невыясненными. В первую очередь это касается природы селективности, реализуемой при отборе ферментом субстрата-мишени, и механизма сопряжения протеолиза и гидролиза АТР.
Осуществление функции гидролиза белковых субстратов исключительно полноразмерными энергозависимыми протеиназами может быть обусловлено участием их АТРазных компонентов (субъединиц или доменов) либо в селективном отборе белков-мишеней с последующим изменением их пространственной структуры (“разворачивание”) и транслокацией их к протеолитическим центрам, либо в активации собственно протеолитических центров фермента, либо в совместном действии указанных факторов. Дальнейший прогресс в выяснении механизмов селективного внутриклеточного протеолиза, по-видимому, во многом связан с исследованием взаимовлияния АТРазного и пептидгидролазного центров в процессе их функционирования и с изучением влияния конформационного состояния как фермента, так и субстрата на каталитическую активность каждого центра.
- Учебное пособие
- Раздел 1. Структура и свойства ферментов
- Инженерная энзимология. Иммобилизованные ферменты. Новые пути практического использования ферментов. Применение ферментов в промышленности, сельском хозяйстве, медицине
- Принцип классификации ферментов. Классы ферментов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Основные положения систематической и тривиальной номенклатуры ферментов
- Способы количественного выражения активности ферментов. Единицы активности. Удельная и молекулярная активность
- Методы определения активности ферментов: колориметрический, спектрофотометрический, флуориметрический, манометрический, биолюминесцентный и др.
- Прямой и непрямой оптический тест Варбурга. Расчет ферментативной активности при определении по конечной точке и при кинетическом определении
- Лекция 1.2 выделение и очистка ферментов
- Разрушение клеток и экстракция белков
- Тепловая денатурация
- Осаждение белков
- Гель-фильтрация
- Разделение белков путем адсорбции
- Выбор ионообменника
- Элюция адсорбированного белка
- Аффинная хроматография
- Гидрофобная хроматография
- Металлохелатная аффинная хроматография
- Высокоэффективная жидкостная хроматография
- Электрофорез
- Изоэлектрическое фокусирование
- Капиллярный электрофорез
- Двумерные системы электрофореза
- Кристаллизация белков
- Лекция 1.3 уровни структурной организации ферментов
- Многостадийный процесс образования пространственной структуры белка
- Механизмы регуляции процесса сворачивания полипептидной цепи внутри клетки
- Ферменты, участвующие в фолдинге белка
- Специальные белки, увеличивающие эффективность сворачивания полипептидной цепи в нативную конформацию
- Посттрансляционная модификация белка
- Роль доменов в пространственной организации молекул ферментов
- Увеличение числа доменов в ферменте и усложнение взаимодействий между ними
- Роль доменов в формирование активного центра фермента
- Роль доменов в регуляции ферментативной активности
- Роль доменов в связывание ферментов с мембранами
- Полифункциональные ферменты
- Бифункциональные ферменты, катализирующие реакции одного метаболического пути
- Бифункциональные ферменты, катализирующие противоположно направленные реакции
- Лекция 1.4 Кофакторы ферментов и их роль в катализе Коферменты, простетические группы, ионы металлов
- Классификация кофакторов
- Функции кофакторов
- Кофакторы окислительно-восстановительных процессов Никотинамидные кофакторы
- Кофакторы переноса групп Коферменты – производные пиридоксина
- Кофакторы процессов синтеза, изомеризации и расщепления с-с связей Биотин
- Роль металлов в функционировании ферментов
- Лекция 1.5. Топография активных центров простых и сложных ферментов
- Методы изучения активных центров ферментов
- Раздел 2. Кинетика и термодинамика
- Ферментативных реакций
- Лекция 2.1.
- Кинетика химических реакций
- Скорость химической реакции
- Основной постулат химической кинетики ‒ закон действия масс
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Реакции третьего порядка
- Уравнения односторонних реакций 0-го, 1-го и 2-ого порядка
- Реакции нулевого порядка
- Реакции первого порядка
- Реакции второго порядка
- Молекулярность элементарных реакций
- Методы определения порядка реакции
- Зависимость скорости реакции от температуры. Уравнения Вант-Гоффа и Аррениуса.
- Катализ
- Лекция 2.2. Стационарная кинетика ферментативный реакций
- Уравнение Михаэлиса-Ментен
- Характеристика кинетических констант
- Методы определения Км и Vmax
- Лекция 2.3. Ингибиторы ферментов.
- Конкурентное ингибирование
- Неконкурентное ингибирование
- Бесконкурентное ингибирование
- Смешанный тип ингибирования
- Субстратное ингибирование
- Методы определения константы ингибирования. Метод Диксона
- Лекция 2.4 Ферменты, не подчиняющиеся кинетике Михаэлиса-Ментен
- Методы определения коэффициента Хилла
- Раздел 3.Механизмы ферментативного катализа
- Сущность явления катализа
- Стадии образования фермент-субстратного комплекса
- Природа сил, стабилизирующих различные конформационные состояния ферментсубстратного комплекса
- Электростатические взаимодействия
- Водородные связи
- Вандерваальсовы взаимодействия
- Гидрофобные взаимодействия
- Факторы, определяющие эффективность и специфичность ферментативного катализа
- Физико-химические механизмы ферментативного катализа
- Лекция 3.2
- Механизм действия гидролаз на примере карбоксипептидазы а
- Связывание субстрата карбоксипептидазой а
- Работы Липскомба с сотрудниками по установлению молекулярного механизма действия кпа
- Методы для изучения механизма действия ферментов
- Лекция 3.3 Специфичность – уникальное свойство ферментов
- Относительная или групповая специфичность действия
- Абсолютная специфичность действия
- Стереоспецифичность ферментов
- Концепция стерического соответствия «ключ-замок»
- Концепция индуцированного соответствия
- Раздел 4. Контроль активности ферментов лекция 4.1. Ферменты в клетке и организованных системах
- Распределение ферментов в клетке
- Ферменты, присутствующие в ядре
- Ферменты митохондрий
- Лизосомальные ферменты
- Ферменты эндоплазматического ретикулума
- Ферменты, локализованные в цитозоле
- Мембранные ферменты
- Уровни структурной организации ферментов в клетке
- Мультиферментные комплексы
- Пируватдегидрогеназный комплекс
- Мультиферментные конъюгаты
- Метаболоны
- Лекция 4.2 Изостерические и аллостерические механизмы регуляции активности ферментов
- Изостерическая регуляция
- Изоферменты
- Лекция 4.3 ковалентная модификация ферментов и ее типы
- Лекция 4.4
- Регуляция количества ферментов в клетке
- Контроль количества ферментов в клетке – процесс, зависящий от соотношения скоростей их биосинтеза и деградации.
- Время полужизни различных ферментов
- Фермент
- Аминокислоты
- Биосинтез ферментов и его регуляция на генетическом уровне. Конститутивные и индуцибельные (адаптивные) ферменты. Репрессия и индукция биосинтеза ферментов
- Убиквитин-протеосомный путь деградации белков у эукариот. Убиквитин – белок, маркирующий белки для деградации. Строение 26s протеосомы
- Раздел 5. Прикладное значение ферментов лекция 5.1. Генетическая инженерия ферментов
- Использование рекомбинантных ферментов
- Лекция 5.2 Ферменты в медицине (часть I)
- Энзимодиагностика Органная специфичность в распределении ферментов
- Ферменты сыворотки крови
- Факторы, влияющие на уровень ферментов во внеклеточной жидкости
- Диагностическое значение снижения ферментативной активности
- Неспецифическое повышение ферментативной активности
- Применение ферментов в качестве аналитических реагентов
- Лактатдегидрогеназа
- Лекция 5.3 Ферменты в медицине (часть II) Энзимопатии
- Врождённые (наследственные) энзимопатии
- Механизм возникновения наследственных энзимопатий
- Блок обмена веществ
- Примеры наследственных энзимопатий
- Приобретённые энзимопатии
- Энзимотерапия Использование ферментов в качестве лекарственных препаратов
- Использование ингибиторов ферментов в качестве лекарственных препаратов
- Библиографический список