4. Звезды и их эволюция
Итак, два важнейших наблюдательных факта, лежащих в фундаменте современной космологии, мы уже отметили – фридмано-хаббловское расширение Вселенной и гамовское реликтовое излучение. Их сопоставление ведет к логическому выводу о существовании некоего Космологического Горизонта, «заглянуть» за который и получить какую-то информацию об объектах, находящихся далее, и о структурах, превосходящих по размеру расстояние до Космологического Горизонта, человечеству не дано (по крайней мере, в современную технологическую эпоху). Пока человек является обитателем Местного сверхскопления галактик, эффект красного хаббловского смещения для источника света, удаленного на расстояние R > 1,4 Гпк, приводит к тому, что этот объект станет неразличим на фоне микроволнового (реликтового) излучения.
Третьим наблюдательным фактом следует считать открытие и исследование крупномасштабной структуры Вселенной. До этого открытия самыми крупными объектами во Вселенной считались гигантские галактики и скопления галактик. Открытие сверхскоплений галактик (крупномасштабной структуры) произвело неизгладимое впечатление на космологов.
Крупномасштабная структура Вселенной была предсказана российскими космологами и астрофизиками во главе с академиком Яковом Борисовичем Зельдовичем. Теоретически анализируя законы эволюции малых возмущений плотности в расширяющейся Вселенной, Зельдович обнаружил любопытное явление: образующиеся объекты не обладали сферической формой (тогда как сами звезды, планеты – сферы, есть и шаровые галактики). Это были структуры объемные, неравные по трем направлениям, весьма похожие на обычные блины. Зельдович так и назвал свою теорию теорией блинов (Бог, если это он испек Вселенную, не чужд обыденности!). Теория предсказывала существование в глубоком космосе пустот, теперь их называют войды (от англ. void – пустота, пустое место).
Чтобы быть совсем точным, надо сказать, что самый крупный объект во Вселенной - Метагалактика, за пределами которой нам мир не виден. Крупномасштабная структура Метагалактики выявлена для шкалы расстояний от нескольких мегапарсек до нескольких сотен мегапарсек. С. Шандарин, Р. Киршнер и др., которые в 1981-82 гг. открыли крупномасштабную структуру, наблюдали далекие галактики в телескоп на трех полях галактик, отстоящих друг от друга на угловые расстояния в 5 градусов. В каждом из полей они сосчитали галактики, измерили их красные смещения и построили гистограмму (графическую столбчатую диаграмму), в плоскости которой отложили то что считали и измеряли: число галактик N – красное смещение z. На гистограмме выявились два пика, разделенные почти пустым пространством. Их интерпретация была предельно проста: мы видим два блина крупномасштабной структуры Вселенной, а между ними пустое поле.
Дальнейшие исследования показали, что самые крупные пространственные неоднородности в распределении галактик имеют форму волокон, или филаментов (англ. filament – нить, волокно), которые образуют стенки ячеек – войдов. Внутри каждого войда галактик нет, они сосредоточены, в волокнах, образующих стенки войда (так можно себе представить трехмерную паучью паутину). Размеры войдов около 100 Мпк, толщина волокон около 10 Мпк. Эта крупномасштабная ячеистая структура Метагалактики, как принято считать, не образует более крупных структур, поэтому в данных мегамасштабах Метагалактика однородна и изотропна. Конечно, абсолютная категоричность здесь неуместна. Планируется построить полное трехмерное распределение галактик в Метагалактике на глубину, превышающую сотню мегапарсек.
Это мы говорили о структуре, а теперь о механизмах образования этих структур. После «большого взрыва» образовавшееся вещество и электромагнитное поле были рассеяны и представляли собой газово-пылевое облако и электромагнитный фон. В результате взаимопритяжения частиц пыли и газа (главным образом водорода) образовались первые поколения звезд. Звезда – это огромное раскаленное небесное тело определенного химического сотава.
После того как возникли первые звезды, оставшийся газ, ввиду наличия у него внутреннего момента движения, собрался в тонкий диск (блин), и в этом диске сформировалось из газа второе поколение звезд. Наиболее массивные звезды быстро эволюционировали с образованием тяжелых металлов, которые выбрасывались в межзвездный газ. Некоторые из тяжелых металлов конденсировались в крошечные крупинки — межзвездную пыль.
Когда в центральной плоскости галактики было сформировано достаточное количество звезд, неустойчивость движения заставила их временно объединиться в скопления, из которых были сформированы спиральные рукава. Рукава представляют собой протяжные образования, которые вращаются вокруг центра галактики. Вещество, из которого они состоят, испытывает изменения. Некоторые звезды могут переходить из одного рукава в другой. Подобно звездам, межзвездный газ и пыль также находятся в рукавах. В межзвездном газе в результате вспышек сверхновых звезд возникает разница в давлении. Газ оттекает из области высокого давления в область низкого давления, образуются облака неионизированного газа высокой плотности. Силы тяготения стремятся сжать такое облако в более компактное образование. Однако сжатию препятствует внутреннее давление, которое стремится заставить облако расшириться. Обычно внутреннее давление больше гравитационного. Но иногда внешнее давление внезапно повышается из-за происходящих неподалеку бурных событий: например, вспышка сверхновой звезды, образование массивной звезды или крупномасштабная перестройка межзвездного магнитного поля. Облако может сжаться до плотности гораздо больше типичной. Тяготение может преодолеть внутреннее давление, вследствие чего облако начинает катастрофически сжиматься, и образуются звезды. По мере сжатия межзвездные пылинки защищают внутренние области облака от нагрева излучением звезд, находящихся снаружи. Температура облака падает, а с ним внутреннее давление в облаке. В результате облако распадается на части, а те, в свою очередь, на еще меньшие образования. В звездах в результате сжатия водород превращается в гелий. Поскольку в центре давление выше, то и гелий образуется в центре, образуется гелиевое ядро.
Ядро еще больше сжимается и разогревается. В слоях, прилегающих к ядру, из-за огромной температуры также начинает образовываться гелий. Когда температура внутри звезды достигает 1,5 X 107К, гелий превращается в углерод, с последующим образованием все более тяжелых химических элементов. В результате образуются красные звезды, сверхгиганты. Заключительный этап жизни звезды зависит от ее массы. При малой массе внешние слои постепенно расширяются и, в конце концов, покидают ядро звезды; на месте гиганта остается горячий маленький карлик с белым свечением, который затем постепенно остывает и становится потухшей звездой. Если масса звезды примерно вдвое превышает массу Солнца, то такие звезды на последнем этапе эволюции теряют устойчивость и могут взорваться, как сверхновые, обогащая межзвездную среду тяжелыми химическими элементами, а затем сжаться, превратившись в нейтронные звезды с диаметром в несколько километров.
Внутри звезд в ходе термоядерных реакций образуется до 30 химических элементов, а во время взрыва и все остальные известные на Земле химические элементы.
Обогащенная тяжелыми элементами межзвездная среда образует звезды нового поколения. Возраст звезд по этому можно определить методом спектрального анализа. Есть звезды-сверхгиганты, намного превышающие массу Солнца. Они либо превращаются в нейтронную звезду, либо в процессе неограниченного сжатия превращаются в «черную дыру», т. е. в объект, обладающий гигантским по своей величине полем тяготения, не выпускающий за свои пределы никакое излучение. Их можно обнаружить косвенно, по их гравитационному воздействию на окружающие тела. Межзвездный газ или газ соседней звезды, притягиваясь и падая на «черную дыру» (этот процесс называется аккрецией), образует вокруг нее шлейф. Напрашивается вывод: звезды и галактики подчиняются всеобщим законам диалектики: рождаются, живут и умирают. И процесс этот продолжается до наших дней.
- Основы современного естествознания введение
- Раздел 1. Тематический план дисциплины
- Раздел 2.
- Краткий курс лекций
- Лекция 1.
- Естествознание в мировой культуре
- 1. Предмет, задачи, структура курса «Основы современного естествознания».
- 2. Естествознание в системе форм общественного сознания.
- 3. Философия, математика, гуманитарные и естественные науки и их объекты
- 4. Естественнонаучная и гуманитарная культуры. Специфика и взаимосвязь естественнонаучного и гуманитарного типов культур
- 5. Проблема постнеклассического межкультурного диалога естественных и гуманитарных наук
- Лекция 2. Особенности физического описания реальности Современные представления о движении, пространстве и времени.
- 1. Идеальные образы объектов реального мира (твердое тело, материальная точка, частица, вакуум, среда, поле, вихрь, волна)
- 2. Физические характеристики идеальных объектов и представление о способах их описания ( масса; заряды и их действие на расстоянии; заряды как источники полей; «свободные» поля, суперпозиция полей)
- 3. Единицы физических величин
- Лекция 3. Современные представления о движении, пространстве и времени
- 1. Движение и его виды. Относительность движения
- 2. Законы сохранения и их роль в формировании научной картины мира (законы сохранения энергии, импульса и момента импульса)
- 3. Пространство и время как основные свойства материи
- Лекция 4. Понятие теплоты и термодинамический способ описания действительности
- 1. Термодинамические системы и их макроскопические храктеристики
- 2. Теплота и механическая работа (закон сохранения энергии)
- 3. Обратимые и необратимые процессы. Равновесное состояние и флуктуации. Закон возрастания энтропии
- 4. Неравновесные системы и их характеристики
- Реакция Белоусова-Жаботинского
- 5. Бифуркации и аттракторы. Спонтанная самоорганизация в природе и обществе
- Лекция 5. Квантовые представления о строении вещества и физическая Вселенная
- 1. Квантовые представления о строении вещества (фотоэффект и эффект Комптона, опыты по дифракции электронов и фотонов).
- 2. Современные представления о строении атома (волновые свойства атомов и молекул; лазерное излучение)
- 3. Соотношение неопределенностей и квантово-волновой дуализм
- 4. Представление об элементарных частицах и их взаимодействии. Ядерные взаимодействия. Атомная и термоядерная энергетика
- 5. Квантовая инженерия в наномире
- Лекция 6. Элементарные частицы и физический эксперимент
- 1. Современные ускорители
- 2. Рождение и аннигиляция элементарных частиц
- 3. Виды взаимодействий элементарных частиц
- 4. Теория кварков
- Лекция 7. Элементы современной космологии (физическая Вселенная)
- 1. Космические объекты и методы их исследования
- 2. Солнечная система в мире галактик
- 3. Модель Большого взрыва
- 4. Звезды и их эволюция
- 5. Земля в свете антропного принципа
- Геохронологическая и стратиграфическая шкалы
- Географическая оболочка Земли
- Лекция 8. Система современного химического знания
- 1. Химия как наука, современная химическая картина мира (структурные уровни организации материи с точки зрения химии).
- 2. Основные понятия и законы химии (периодический закон и его значение)
- 3. Классификация химических веществ
- § 2. Теория строения органических соединений
- § 3. Классификация органических соединений
- § 4. Высокомолекулярные соединения (полимеры)
- 4. Теория химического строения вещества. Взаимосвязь между строением, свойствами и реакционной способностью вещества
- Лекция 9. Растворы. Химическая идентификация
- 1. Растворы и их особенности
- 2. Химическая идентификация
- 3. Химические процессы (реакции)
- 4. Химия экстремальных состояний
- Лекция 10. Современная химия: экономический и социальный аспекты
- 1. Масштабы современного химического производства
- 2. Проблемы сырьевых ресурсов и химия
- Металлы и их коррозия
- 3. Химические процессы и материалы (традиционные материалы - дерево, стекло, керамика; применение металлов и сплавов, силикатных материалов, полимеров, биологически активных веществ)
- 6.11. Традиционные материалы с новыми свойствами
- Синтетические материалы.
- 4. Материалы для создания носителей информации. Химия и нанотехнологии
- 5. Химико-энергетические процессы в природе и технике (альтернативные виды топлива, «зеленая химия»)
- Аккумуляторы для сотовых телефонов. Эффект памяти
- А теперь подведем итоги.
- Лекция 11. Роль химии в современном обществе
- 1. Экологические и социальные аспекты химии
- 2. Проблема переработки вторичных ресурсов
- 3. Химия и окружающая среда
- 4. Защита биосферы от химических загрязнений
- 5. Роль химии в решении проблем устойчивого развития цивилизации
- Лекция 12. Особенности современного биологического знания и его эволюция
- 1. Биология как наука и особенности биологического познания мира
- 2. Фундаментальные и частные биологические теории
- 3. Традиционный, физико-химический, эволюционный и биоинженерный периоды развития биологии. Основные достижения биологии в эти периоды
- 4. Генетическая революция в биологии
- 5. Синергетическая теория эволюции (глобальная эволюция)
- 6. Этические проблемы современной биологии
- Лекция 13. Современные концепции происхождения и сущности жизни
- 1. Феномен жизни и его исследование
- 2. Отличительные особенности живой и неживой материи
- 3. Основные концепции происхождения жизни
- 5. Идея трансформации биосферы в ноосферу и глобальный эволюционизм
- Лекция 14. Концепция структурных уровней организации живой материи
- 1. Уровни организации живой природы: молекулярно-генетический, онтогенетический, надорганизменный (популяционно-видовой), популяционно-биоценотический (биогеоценотический)
- 2. Биосферный уровень организации живой материи
- 3. В.И. Вернадский о роли «живого вещества»
- 4. Материальные основы появления жизни на Земле
- Концепция происхождения живого по гипотезе Опарина-Холдейна
- 5. Возникновение и роль многоклеточных организмов в формировании биосферы Земли Лекция 15. Человек, его место и роль в едином социоприродном комплексе
- 1. Человек как единство биологического, социального и духовного. Генезис человека
- 2. Факторы, закономерности и этапы антропосоциогенеза
- 3. Культура как фактор регуляции (агрессии) человека
- 4. Социобиология и проблема геннокультурной коэволюции
- 5. Биологические предпосылки возникновения социальности человека. Роль социальных факторов в становлении человека
- 4. Перспективы исследования космобиосоциальной сущности человека в современной биологии
- Биокатализ
- Генные технологии
- 8 8. Проблемы клонирования
- 2. Достижения и возможные негативные последствия биотехнологий
- 3. Поиск путей развития общества, сохраняющих целостность природы Глава 11 гармония трудовой деятельности людей и природы
- 11.1. Обновление энергосистем
- 11.2. Промышленность, автотранспорт и окружающая среда
- 11.3. Города и природа
- 11.4. Решение проблем утилизации
- 11.5. Перспективные материалы, технологии и окружающая среда
- 4. Ресурсы биосферы и демографические проблемы
- Лекция 17. Социальное измерение современного естествознания
- 1. Роль научного знания на современном этапе развития общества
- 2. Нелинейное освоение культурой результатов научной деятельности
- 3. Наука и сми
- 5.4. Экологические проблемы сегодня
- 4. Естествознание как основа современных технологий
- 5. Проблема моделирования социокультурных явлений
- Раздел 3.
- Семинар 2 . Взаимодействие естественнонаучного и гуманитарного знания
- Семинар 4. Концепции термодинамики
- Семинар 5 . Квантовые представления о строении вещества и физическая Вселенная
- Семинар 6 . Элементарные частицы и физический эксперимент
- Семинар 7 . Элементы современной космологии (физическая вселенная)
- Раздел 2. Химия в контексте устойчивого развития общества Семинар 8. Система современного химического знания
- Семинар 9 . Растворы. Химическая идентификация
- Семинар 10. Современная химия: экономический и социальный аспекты
- Семинар 11. Роль химии в современном обществе
- Раздел 3. Специфика, структура и проблемное поле современного биологического познания Семинар 12 . Особенности современного биологического знания и его эволюции
- Семинар 13 . Современные концепции происхождения и сущности жизни
- Семинар 14. Концепция структурных уровней организации живой материи
- Семинар 15. Человек, его место и роль в едином социоприродном комплексе
- Семинар 16 . Социальный аспект биологического познания
- Заключение. Социальное измерение современного естествознания Семинар 17. Перспективы развития естествознания и гуманитарных наук в 21 веке
- 3.2. Перечень вопросов к экзамену (зачету)
- 3.3. Учебно-методические материалы по дисциплине