1. Растворы и их особенности
Если в сосуд с водой поместить кристаллы поваренной соли, сахара или перманганата калия (марганцовки), то мы можем наблюдать, как количество твердого вещества постепенно уменьшается. При этом вода, в которую были добавлены кристаллы, приобретает новые свойства: у нее появляется соленый или сладкий вкус (в случае марганцовки появляется малиновая окраска), изменяется плотность, температура замерзания и т.д. Полученные жидкости уже нельзя назвать водой, даже если они неотличимы от воды по внешнему виду (как в случае с солью и сахаром). Это – растворы. Растворы не отстаиваются и сохранятся все время однородными. Если раствор профильтровать через самый плотный фильтр, то ни соль, ни сахар, ни марганцевокислый калий не удается отделить от воды. Следовательно, эти вещества в воде раздроблены до наиболее мелких частиц – молекул. Молекулы могут опять собраться в кристаллы только тогда, когда мы выпарим воду. Таким образом, растворы – это молекулярные смеси.
Растворами называются однородные молекулярные смеси из двух или более веществ.
Растворы играют большую роль в природе и практической деятельности человека. Почвообразовательные процессы, формирование геологических пород, физиологические процессы в растительном и животном мире, процессы технологического типа в различных производствах в основном протекают в растворах.
Любой раствор состоит из растворителя и растворенного вещества. В приведенных примерах растворителем является вода. Но не всегда обязательно вода является растворителем. Например, можно получить раствор воды в серной кислоте. Здесь растворителем будет кислота. Можно приготовить и растворы кислоты в воде.
Из двух или нескольких компонентов раствора растворителем является тот, который взят в большем количестве и имеет то же агрегатное состояние, что и раствор в целом.
Существуют растворы не только жидкие, но и газовые и даже твердые. Например, воздух – раствор кислорода и еще нескольких газов в азоте. Сплавы металлов представляют собой твердые растворы металлов друг в друге. Газы, как мы уже знаем, способны растворяться в воде.
Для газов, взаимодействие между молекулами которых мало, свойственно отсутствие определенной структуры и хаотичность движения молекул смешиваемых веществ. Газовые растворы при обычных давлениях и температурах принято рассматривать как механическую смесь, каждый компонент которой сохраняет свои индивидуальные физические и химические свойства. При значительных температурах плотность газов становится сравнимой с плотностью жидкостей, а газовые смеси по своим свойствам приближаются к растворам. Например, воздух можно считать раствором при значительном давлении, когда его состояние приближается к жидкому.
И все же жидкие растворы являются самым широко распространенным типом растворов, к данному типу относятся все природные воды.
Чтобы понять механизм растворения понаблюдаем, как растворяется добавленный в чай сахар. Если чай холодный, то сахар растворяется медленно. Наоборот, если чай горячий и размешивается ложечкой, то растворение происходит быстро.
Попадая в воду, молекулы сахара, находящиеся на поверхности кристаллов сахарного песка, образуют с молекулами воды донорно-акцепторные (водородные) связи. При этом с одной молекулой сахара связывается несколько молекул воды. Тепловое движение молекул воды заставляет связанные с ними молекулы сахара отрываться от кристалла и переходить в толщу молекул растворителя (рис. 7-2).
Рис. 7-2. Молекулы сахара (белые кружочки), находящиеся на поверхности кристалла сахара, окружены молекулами воды (темные кружочки). Между молекулами сахара и воды возникают водородные связи, благодаря которым молекулы сахара отрываются от поверхности кристалла. Молекулы воды, не связанные с молекулами сахара, на рисунке не показаны.
Молекулы сахара, перешедшие из кристалла в раствор, могут передвигаться по всему объему раствора вместе с молекулами воды благодаря тепловому движению. Это явление называется диффузией. Диффузия происходит медленно, поэтому около поверхности кристаллов находится избыток уже оторванных от кристалла, но еще не диффундировавших в раствор молекул сахара.
Они мешают новым молекулам воды подойти к поверхности кристалла, чтобы связаться с его молекулами водородными связями. Если раствор перемешивать, то диффузия происходит интенсивнее и растворение сахара идет быстрее. Молекулы сахара распределяются равномерно и раствор становится одинаково сладким по всему объему.
Растворение – это самопроизвольный процесс, сопровождающийся уменьшением внутренней энергии вещества.
Количество молекул, способных перейти в раствор, часто ограничено. Молекулы вещества не только покидают кристалл, но и вновь присоединяются к кристаллу из раствора. Пока кристаллов относительно немного, больше молекул переходит в раствор, чем возвращается из него – идет растворение. Но если растворитель находится в контакте с большим количеством кристаллов, то число уходящих и возвращающихся молекул становится одинаковым и для внешнего наблюдателя растворение прекращается. Это означает, что внутренняя энергия системы растворитель-растворяющееся вещество становиться минимальной, наступает равновесие, т.е. скорость растворения равна скорости кристаллизации растворенного вещества. Например, при комнатной температуре мы не можем растворить в 100 мл воды более 200 г сахара или более 35,9 г поваренной соли. В таких случаях говорят, что раствор стал насыщенным.
Раствор, в котором данное вещество при данной температуре уже больше не растворяется, называется НАСЫЩЕННЫМ.
В насыщенном растворе при данной температуре содержится максимально возможное количество растворенного вещества. В реальном растворе, где есть тепловое движение молекул, молекулы продолжают “трудиться”, транспортируя частицы растворенного вещества из кристалла в раствор и обратно. Такое состояние называется ДИНАМИЧЕСКИМ равновесием (равновесием в движении). В связи с этим можно дополнить определение насыщенного раствора: Насыщенным называется такой раствор, который находится в динамическом равновесии с избытком растворенного вещества.
Следовательно, никакое самое сильное перемешивание не помогает растворить в насыщенном растворе дополнительные порции вещества. Однако, если повысить температуру, то раствор вновь может стать ненасыщенным и растворить еще определенную порцию кристаллов.
Ненасыщенными растворами называют такие, в которых растворенного вещества меньше чем в насыщенных.
Мы говорим: "сахар растворяется в воде хорошо" или "мел плохо растворяется в воде". Но можно и количественно оценить способность того или иного вещества к растворению или, другими словами, растворимость вещества. Растворимость характеризует концентрацию насыщенного раствора вещества в данном растворителе.
РАСТВОРИМОСТЬЮ называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях является его содержание в насыщенном растворе.
Если в 100 г воды растворяется более 10 г вещества, то такое вещество называют хорошо растворимым. Если растворяется менее 1 г вещества – вещество малорастворимо. Наконец, вещество считают практически нерастворимым, если в раствор переходит менее 0,01 г вещества. Абсолютно нерастворимых веществ не бывает. Даже когда мы наливаем воду в стеклянный сосуд, очень небольшая часть молекул стекла неизбежно переходит в раствор.
Растворимость, выраженная при помощи массы вещества, которое может раствориться в 100 г воды при данной температуре, называют также коэффициентом растворимости. Тогда если растворимость (r ) больше 10, то вещество считается хорошо растворимым. Если растворимость лежит в пределах от 1 до 10, то вещество считается растворимым. В том случае, если коэффициент растворимости меньше 0,1 , вещество считается практически нерастворимым. Можно сказать, что коэффициент растворимости равен отношению массы растворенного вещества к объему растворителя при условии получения насыщенного раствора. Существуют и другие способы количественного выражения содержания растворенного вещества в растворе. Широко применяются такие величины как массовая доля и молярная концентрация.
Массовая доля – это отношение массы растворенного вещества к общей массе раствора, выраженное в процентах. Молярная концентрация – это отношение количества растворенного вещества в молях к объему раствора. Размерность молярной концентрации имеет вид [С]= моль/л.
В целом растворимость разных веществ определяется многими сложными причинами, некоторые из которых до сих пор не ясны. Поэтому трудно предсказать растворимость какого-либо вещества по его химической формуле или агрегатному состоянию. Чаще всего растворимость определяется тремя основными факторами: природой вещества; его агрегатным состоянием; внешними условиями протекания процесса растворения.
В качестве примера приведем растворимость (в граммах вещества на 100 г воды при комнатной температуре) нескольких веществ: твердых, жидких и газообразных, среди которых многие имеют похожие химические формулы (таблица 7-2).
Таблица 7-2. Растворимость некоторых веществ в воде при комнатной температуре.
Название вещества | Формула | Агрегатное состояние | Растворимость (г/100 г воды) |
Серная кислота | H2SO4 | жидкость | любое количество |
Хлористый водород | HCl | газ | 71,9 |
Хлорид натрия | NaCl | крист. | 35,9 |
Сульфат меди | CuSO4× 5H2O | крист. | 20,7 |
Сульфат кальция | CaSO4 | крист. | 0,2 |
Тетрахлорид углерода | CCl4 | жидкость | 0,08 |
Сульфат бария | BaSO4 | крист. | 0,00023 |
Хлорид серебра | AgCl | крист. | 0,00015 |
Растворимость большинства (но не всех!) твердых веществ с увеличением температуры увеличивается, а растворимость газов, наоборот, уменьшается. Это связано, прежде всего, с тем, что молекулы газов при тепловом движении способны покидать раствор гораздо легче, чем молекулы твердых веществ. Если измерять растворимость веществ при разных температурах, то обнаружится, что одни вещества заметно меняют свою растворимость в зависимости от температуры, а другие – не очень сильно (см. табл. 7-3).
Таблица 7-3. Влияние температуры на растворимость некоторых твердых веществ. В таблице приведена растворимость в г/100 г воды.
Вещество | Температура, ° C | ||||
| 0 | 20 | 50 | 80 | 100 |
KBr | 53,5 | 65,2 | 80,8 | 94,6 | 103,3 |
NaCl | 35,7 | 35,9 | 36,8 | 38,1 | 39,4 |
CaSO4 | 0,176 | 0,206 | 0,180 | 0,102 | 0,066 |
Если полученные в опытах значения нанести на оси координат, то получаются так называемые кривые растворимости различных веществ (рис. 7-3). Эти кривые имеют практическое значение. По ним легко узнать, сколько вещества (например, KNO3) выпадет в осадок при охлаждении до 20 С насыщенного раствора, приготовленного при 80° С.
Рис. 7-3. Кривые растворимости твердых (а) и газообразных (б) веществ.
С помощью таких операций очищают вещества. Дело в том, что при охлаждении ненасыщенного раствора образуется насыщенный раствор, но насыщенный по основному веществу, которого больше всего, а не по примесям. Поэтому при охлаждении в осадок выпадает только чистое вещество, а примеси (вместе с частью вещества) остаются в растворе. Чистые кристаллы отфильтровывают от охлажденного, загрязненного примесями раствора. Этот способ очистки называется ПЕРЕКРИСТАЛЛИЗАЦИЕЙ. Так очищают, например, многие лекарственные препараты.
Давление не оказывает заметного влияния на растворимость твердых веществ, потому что при растворении не происходит заметного изменения объема системы. Зато увеличение давления повышает растворимость газов. В этом можно убедиться, открыв бутылку с минеральной водой, в которой углекислый газ растворяют под давлением. Как только бутылку открывают, давление в ней падает и тут же уменьшается растворимость газа, который начинает выделяться из раствора в виде пузырьков.
Когда молекулы растворенного вещества связываются с молекулами воды, то получаются, строго говоря, новые химические соединения. Эти молекулярные агрегаты не имеют постоянного состава и поэтому не являются теми химическими соединениями, которые мы привыкли выражать формулами. Их общее название – гидраты. Процесс связывания веществ с водой называется гидратацией.
Поскольку образование водородных и других связей энергетически выгодно (для растворимых веществ), гидратация сопровождается выделением энергии. Часть этой энергии расходуется на разрушение кристаллической решетки, а ее избыток может выделяться в виде тепла. Например, растворение твердого гидроксида натрия NaOH сопровождается сильным разогревом раствора.
Если на разрушение кристаллической решетки тратится больше энергии, чем образуется при получении гидратов, то раствор может охлаждаться. Например, если в стакан с водой поместить твердый нитрат аммония NH4NO3 и поставить стакан на влажный картон, то картон примерзает к стакану – настолько низко падает температура раствора.
Молекулы воды из гидратной оболочки иногда могут вступать в химическую реакцию с растворенным веществом, образуя уже настоящее химическое соединение с постоянным составом, которые можно выделить из раствора, осторожно выпаривая воду. Эти соединения называются кристаллогидратами.
Кристаллогидрат (медный купорос) CuSO4.5H2O часто используется в бытовой деятельности человека.
Приведенные факты говорят о том, что растворение не является чисто физическим явлением, хотя и можно вернуть растворенное вещество в неизменном виде путем выпаривания растворителя. Казалось бы – нет изменения вещества – нет и химических превращений. На самом деле при выпаривании растворов происходит разрушение гидратов (реакция разложения) и вновь образуется кристаллическое вещество. Таким образом, и растворение вещества и выпаривание раствора имеют признаки химических реакций.
Главное, что в самом растворе вещество находится в качественно новом состоянии – в виде гидратов. Поэтому растворение следует считать не физическим, а физико-химическим процессом. С этой точки зрения более полным определением раствора является следующее: Растворами называют термодинамически устойчивые физико-химические однородные (однофазные) смеси переменного состава, состоящие из двух или нескольких веществ и продуктов их взаимодействия.
Научное представление о природе растворов было сформулировано в 80-е годы XIX столетия русским химиком Д.И. Менделеевым. Оно состоит в том, что растворы – это смеси непрочных соединений, находящихся в состоянии частичной диссоциации. Дальнейшее развитие теории растворов привело к появлению понятий сольватации и гидратации. Термин «сольватация» в переводе с латыни solve – раствор, означает совокупность процессов, протекающих при растворении одного (или нескольких) вещества в другом. Растворение веществ в воде получило название гидратации. Как результат гидратации возникают гидраты, а сольватации – сольваты.
Механизм образования сольватов зависит от химической природы растворенного вещества и растворителя. Если растворенные вещества обладают ионной структурой молекул, то удержание молекул растворителя осуществляется на основе ион-дипольного или донорно-акцепторного взаимодействия. В случае веществ с молекулярной структурой сольваты образуются за счет диполь-дипольного взаимодействия.
Возникновение растворов с определенной кристаллической структурой, когда каждой молекуле растворенного вещества соответствует определенное количество молекул воды, подтверждает реальность указанных механизмов. Гидраты чаще всего являются нестойкими соединениями, однако кристаллизационная вода в них удерживается очень прочно. Для ее удаления прибегают к прокаливанию вещества.
- Основы современного естествознания введение
- Раздел 1. Тематический план дисциплины
- Раздел 2.
- Краткий курс лекций
- Лекция 1.
- Естествознание в мировой культуре
- 1. Предмет, задачи, структура курса «Основы современного естествознания».
- 2. Естествознание в системе форм общественного сознания.
- 3. Философия, математика, гуманитарные и естественные науки и их объекты
- 4. Естественнонаучная и гуманитарная культуры. Специфика и взаимосвязь естественнонаучного и гуманитарного типов культур
- 5. Проблема постнеклассического межкультурного диалога естественных и гуманитарных наук
- Лекция 2. Особенности физического описания реальности Современные представления о движении, пространстве и времени.
- 1. Идеальные образы объектов реального мира (твердое тело, материальная точка, частица, вакуум, среда, поле, вихрь, волна)
- 2. Физические характеристики идеальных объектов и представление о способах их описания ( масса; заряды и их действие на расстоянии; заряды как источники полей; «свободные» поля, суперпозиция полей)
- 3. Единицы физических величин
- Лекция 3. Современные представления о движении, пространстве и времени
- 1. Движение и его виды. Относительность движения
- 2. Законы сохранения и их роль в формировании научной картины мира (законы сохранения энергии, импульса и момента импульса)
- 3. Пространство и время как основные свойства материи
- Лекция 4. Понятие теплоты и термодинамический способ описания действительности
- 1. Термодинамические системы и их макроскопические храктеристики
- 2. Теплота и механическая работа (закон сохранения энергии)
- 3. Обратимые и необратимые процессы. Равновесное состояние и флуктуации. Закон возрастания энтропии
- 4. Неравновесные системы и их характеристики
- Реакция Белоусова-Жаботинского
- 5. Бифуркации и аттракторы. Спонтанная самоорганизация в природе и обществе
- Лекция 5. Квантовые представления о строении вещества и физическая Вселенная
- 1. Квантовые представления о строении вещества (фотоэффект и эффект Комптона, опыты по дифракции электронов и фотонов).
- 2. Современные представления о строении атома (волновые свойства атомов и молекул; лазерное излучение)
- 3. Соотношение неопределенностей и квантово-волновой дуализм
- 4. Представление об элементарных частицах и их взаимодействии. Ядерные взаимодействия. Атомная и термоядерная энергетика
- 5. Квантовая инженерия в наномире
- Лекция 6. Элементарные частицы и физический эксперимент
- 1. Современные ускорители
- 2. Рождение и аннигиляция элементарных частиц
- 3. Виды взаимодействий элементарных частиц
- 4. Теория кварков
- Лекция 7. Элементы современной космологии (физическая Вселенная)
- 1. Космические объекты и методы их исследования
- 2. Солнечная система в мире галактик
- 3. Модель Большого взрыва
- 4. Звезды и их эволюция
- 5. Земля в свете антропного принципа
- Геохронологическая и стратиграфическая шкалы
- Географическая оболочка Земли
- Лекция 8. Система современного химического знания
- 1. Химия как наука, современная химическая картина мира (структурные уровни организации материи с точки зрения химии).
- 2. Основные понятия и законы химии (периодический закон и его значение)
- 3. Классификация химических веществ
- § 2. Теория строения органических соединений
- § 3. Классификация органических соединений
- § 4. Высокомолекулярные соединения (полимеры)
- 4. Теория химического строения вещества. Взаимосвязь между строением, свойствами и реакционной способностью вещества
- Лекция 9. Растворы. Химическая идентификация
- 1. Растворы и их особенности
- 2. Химическая идентификация
- 3. Химические процессы (реакции)
- 4. Химия экстремальных состояний
- Лекция 10. Современная химия: экономический и социальный аспекты
- 1. Масштабы современного химического производства
- 2. Проблемы сырьевых ресурсов и химия
- Металлы и их коррозия
- 3. Химические процессы и материалы (традиционные материалы - дерево, стекло, керамика; применение металлов и сплавов, силикатных материалов, полимеров, биологически активных веществ)
- 6.11. Традиционные материалы с новыми свойствами
- Синтетические материалы.
- 4. Материалы для создания носителей информации. Химия и нанотехнологии
- 5. Химико-энергетические процессы в природе и технике (альтернативные виды топлива, «зеленая химия»)
- Аккумуляторы для сотовых телефонов. Эффект памяти
- А теперь подведем итоги.
- Лекция 11. Роль химии в современном обществе
- 1. Экологические и социальные аспекты химии
- 2. Проблема переработки вторичных ресурсов
- 3. Химия и окружающая среда
- 4. Защита биосферы от химических загрязнений
- 5. Роль химии в решении проблем устойчивого развития цивилизации
- Лекция 12. Особенности современного биологического знания и его эволюция
- 1. Биология как наука и особенности биологического познания мира
- 2. Фундаментальные и частные биологические теории
- 3. Традиционный, физико-химический, эволюционный и биоинженерный периоды развития биологии. Основные достижения биологии в эти периоды
- 4. Генетическая революция в биологии
- 5. Синергетическая теория эволюции (глобальная эволюция)
- 6. Этические проблемы современной биологии
- Лекция 13. Современные концепции происхождения и сущности жизни
- 1. Феномен жизни и его исследование
- 2. Отличительные особенности живой и неживой материи
- 3. Основные концепции происхождения жизни
- 5. Идея трансформации биосферы в ноосферу и глобальный эволюционизм
- Лекция 14. Концепция структурных уровней организации живой материи
- 1. Уровни организации живой природы: молекулярно-генетический, онтогенетический, надорганизменный (популяционно-видовой), популяционно-биоценотический (биогеоценотический)
- 2. Биосферный уровень организации живой материи
- 3. В.И. Вернадский о роли «живого вещества»
- 4. Материальные основы появления жизни на Земле
- Концепция происхождения живого по гипотезе Опарина-Холдейна
- 5. Возникновение и роль многоклеточных организмов в формировании биосферы Земли Лекция 15. Человек, его место и роль в едином социоприродном комплексе
- 1. Человек как единство биологического, социального и духовного. Генезис человека
- 2. Факторы, закономерности и этапы антропосоциогенеза
- 3. Культура как фактор регуляции (агрессии) человека
- 4. Социобиология и проблема геннокультурной коэволюции
- 5. Биологические предпосылки возникновения социальности человека. Роль социальных факторов в становлении человека
- 4. Перспективы исследования космобиосоциальной сущности человека в современной биологии
- Биокатализ
- Генные технологии
- 8 8. Проблемы клонирования
- 2. Достижения и возможные негативные последствия биотехнологий
- 3. Поиск путей развития общества, сохраняющих целостность природы Глава 11 гармония трудовой деятельности людей и природы
- 11.1. Обновление энергосистем
- 11.2. Промышленность, автотранспорт и окружающая среда
- 11.3. Города и природа
- 11.4. Решение проблем утилизации
- 11.5. Перспективные материалы, технологии и окружающая среда
- 4. Ресурсы биосферы и демографические проблемы
- Лекция 17. Социальное измерение современного естествознания
- 1. Роль научного знания на современном этапе развития общества
- 2. Нелинейное освоение культурой результатов научной деятельности
- 3. Наука и сми
- 5.4. Экологические проблемы сегодня
- 4. Естествознание как основа современных технологий
- 5. Проблема моделирования социокультурных явлений
- Раздел 3.
- Семинар 2 . Взаимодействие естественнонаучного и гуманитарного знания
- Семинар 4. Концепции термодинамики
- Семинар 5 . Квантовые представления о строении вещества и физическая Вселенная
- Семинар 6 . Элементарные частицы и физический эксперимент
- Семинар 7 . Элементы современной космологии (физическая вселенная)
- Раздел 2. Химия в контексте устойчивого развития общества Семинар 8. Система современного химического знания
- Семинар 9 . Растворы. Химическая идентификация
- Семинар 10. Современная химия: экономический и социальный аспекты
- Семинар 11. Роль химии в современном обществе
- Раздел 3. Специфика, структура и проблемное поле современного биологического познания Семинар 12 . Особенности современного биологического знания и его эволюции
- Семинар 13 . Современные концепции происхождения и сущности жизни
- Семинар 14. Концепция структурных уровней организации живой материи
- Семинар 15. Человек, его место и роль в едином социоприродном комплексе
- Семинар 16 . Социальный аспект биологического познания
- Заключение. Социальное измерение современного естествознания Семинар 17. Перспективы развития естествознания и гуманитарных наук в 21 веке
- 3.2. Перечень вопросов к экзамену (зачету)
- 3.3. Учебно-методические материалы по дисциплине