5. Химико-энергетические процессы в природе и технике (альтернативные виды топлива, «зеленая химия»)
В живой природе все объекты находятся в потоке непрерывного обмена веществом, энергией и информацией с окружающей средой. Основу обмена составляют взаимосвязанные и сбалансированные процессы ассимиляции и диссимиляции, те. Процессы синтеза сложных веществ в организме и разложения их на более простые с выделением энергии соответственно.
Существенная доля электроэнергии производится на тепловых электростанциях, на которых ископаемое топливо используется для получения тепла и пара, подаваемого на турбогенераторы, вырабатывающие электроэнергию. Топливом служит уголь, нефть или природный газ, а на атомных станциях – ядерное горючее, выделяющее тепло при делении ядер.
Принципы работы различных тепловых станций во многом совпадают и отличаются способом получения тепла от первичного источника – органического либо ядерного топлива. В результате сжигания топлива или ядерных реакций выделяется тепло, используемое для нагревания воды и получения пара (рис. 9.3). Полученный пар с высокими температурой и давлением подается на турбину, вращающую якорь генератора электрического тока. Отработанный пар с пониженными температурой и давлением, покидая турбину, направляется в конденсатор, через который пропускается охлаждающая вода для превращения пара в воду. В процессе конденсации пара охлаждающая вода нагревается, эта вода сбрасывается в водоем, откуда она забиралась, либо пропускается через градирни для охлаждения и повторного использования в конденсаторе. Вода, образовавшаяся из сконденсированного пара, возвращается в котел, и описанный выше цикл повторяется.
На современной топливной станции с КПД около 40%, работающей на угле, на каждую единицу произведенной электрической энергии теряется 1,5, а на атомной станции 2,33 единицы тепла. Тепловые сбросы на атомных электростанциях передаются в основном воде, охлаждающей конденсаторы. На электростанциях на органическом топливе охлаждающей воде передается около 75% тепловых отходов, а остальное неиспользованное тепло отводится через дымовые трубы.
Громадное количество производимой электрической энергии неизбежно влечет за собой сброс чрезвычайно больших объемов тепловых отходов в окружающую среду: реки, водоемы и атмосферу. Сбрасываемое тепло приводит к тепловым загрязнениям окружающей среды. Тепловое загрязнение (преимущественно воды) сопровождает процесс охлаждения открытого типа, при котором охлаждающая вода поступает из внешнего резервуара (бассейна реки, водоема) и затем в нагретом состоянии после использования для конденсации пара возвращается опять в тот же резервуар, откуда она забиралась. Охлаждение другого типа – с замкнутым циклом, когда тепло, получаемое охлаждающей водой, рассеивается в атмосфере при помощи градирен (башен, в которых вода охлаждается путем разбрызгивания и испарения) – приводит к тепловому загрязнению в основном атмосферы. Результаты исследований показывают, что тепловое загрязнение и воды, и атмосферы нарушает жизнедеятельность экосистем. Кроме того, тепловые электростанции – источник колоссального количества углекислого газа, двуокиси серы и других газов, загрязняющих атмосферу. Все это означает, что производство энергии на тепловых станциях – не самый лучший и эффективный способ производства энергии. В этой связи продолжается поиск более эффективных источников энергии.
Технологий производства биотоплива несколько. Одна из них – это переработка сельскохозяйственных отходов в топливо. Сырьем, для этого процесса, могут служить и куски древесины, и солома, и навоз. Производство именно такого топлива, получившее название SunDiesel, начала немецкая химическая компания Choren Industriers при поддержке концернов DaimlerChrysler и Volkswagen.
После сушки отходы нагреваются до 400-500°С, выделившийся газ проходит ряд превращений в присутствии катализатора – и на выходе из реактора получается дизельное топливо без содержания серы и других вредных примесей. Кроме того, биодизельное топливо «СО2-нейтрально» по отношению к окружающей среде – при его сгорании в атмосферу возвращается та углекислота, что была поглощена растениями при росте.
Чистота такой биосолярки тоже играет положительную роль – испытания показали, что она позволяет выполнять нормы токсичности Евро 4 даже тем двигателям, которые рассчитаны только на Евро 3. Конечно, пока литр «солнечной» солярки дороже обычной.
По оценкам авторов проекта, нынешние возможности сельского хозяйства Европы способны обеспечить таким топливом от половины до 80% всех легковых дизелей.
Еще один способ получения биологического дизельного топлива – растительное сырье. Тем более идея получать его из растительного сырья была озвучена еще Рудольфом Дизелем! В 1900 году он даже продемонстрировал двигатель, работавший на горючем из арахисового масла.
Основой для биодизельного топлива служат различные компоненты, чаще всего соя, рапс, хлопок, а в последнее время ятрофа – это южноамериканское растение еще называют бутылочным деревом. Технология в общих чертах такова: семена растений проходят через маслобойку, в которой масло отделяется от шрота – отходов маслоэкстракционного производства. Затем масло смешивают с метанолом, применяя в качестве катализатора метоксид натрия. Полученную смесь очищают – горючее готово.
В процессе производства «биодизеля» из сырья выжимают масло, очищают от вкраплений; полуфабрикат нагревают, охлаждают и дистиллируют: 1 – низкотемпературный газовый генератор; 2 – высокотемпературный реактор; 3 – пылевой фильтр; 4 – теплообменник; 5 – подача воды; 6 – сепаратор; 7 – многотрубочный реактор; 8 – газовый компрессор; 9 – конденсор; 10 – система охлаждения; 11 – нагреватель; 12 – дистилляционная емкость; 13 – газовый электрогенератор; 14 – резервуар с готовым топливом
В данный момент наиболее предпочтительным сырьем для производства биодизеля является рапс, которое как сорняк растет где угодно, единственный нюанс – его надо вовремя собрать. Урожайность рапса достигает 20-25 центнеров с гектара. Но пока его только добавляют в дизельное топливо, поскольку рапсовое масло в чистом виде как топливо не используется. Из-за более высокой вязкости (почти в 20 раз выше по сравнению с дизельным горючим) требуется другая топливная аппаратура и изменение камеры сгорания. Масло смешивают с метанолом и получают метиловый эфир, иначе называемый «маслометанольная смесь». Из тонны получается 350 килограммов такой смеси. Для получения биодизеля в солярку добавляют 30% маслометанольной смеси. Вместо ядовитого метилового спирта рапсовое масло можно смешивать с этиловым (пищевым) спиртом.
Интересно, что в ходе переработки масла в биодизель получают ряд дополнительных продуктов, пользующихся спросом (например, глицерин, сульфат калия).
Плюсы:
Экономический аспект. Страны, где нефти нет либо крайне мало, готовы платить зеленым сырьем (а не долларом) за энергетическую независимость!
«Биодизель» практически не содержит серы и канцерогенного бензола. Разложение этого топлива происходит в естественных условиях без вреда для природы, а в процессе сгорания в двигателе выбросы в атмосферу СО2 на 50-80% ниже, чем при работе на традиционном минеральном дизтопливе;
Растительное топливо отличает хорошая воспламеняемость, поскольку его цетановое число достигает 58, тогда как этот показатель для традиционной солярки не превышает 52. Иными словами, зажечь биодизельное топливо легче, но, увы, сгорает оно с меньшей теплоотдачей (см. таблицу);
Запасы сырья могут возобновляться ежегодно, культура не требует особого ухода в процессе выращивания;
В ходе переработки масла получают дополнительные продукты (глицерин, сульфат натрия);
Минусы:
Себестоимость производства выше, чем бензина и дизтоплива;
Требуются дополнительные площади сельскохозяйственных земель;
Эфиры рапсового масла обладают значительной коррозионной активностью. Это чревато потерей стойкости резиновых прокладок и сальников, образованием твердых отложений в форсунках и жиклерах, забитыми топливными фильтрами и отказавшими насосами высокого давления;
Высокое содержание в «растительном» выхлопе окиси азота NOx. Содержание NOx в выхлопе в сравнении с обычным дизельным топливом на 10% больше, а в ходе эксперимента инженеры Volvo доказали, что эта разница может достигать 40%;
Борьба с токсичностью приводит и к потере мощности, а ее компенсирует больший расход топлива;
Но технологии не стоят на месте. Так, норвежские компании–производители газетной бумаги планируют построить в течение пяти-шести лет завод по переработке древесных опилок и получать чистую «биосолярку» нового поколения.
Оригинальное направление выбрали американские ученые из университета Айовы, намеревающиеся привлечь нанотехнологии. Они предложили использовать мельчайшие частицы – наносферы, которые отличает пористая структура. В ходе химической реакции поры заполняет катализатор, что ускоряет процесс, а необходимая обычно процедура очищения становится лишней.
Третий вид биологического топлива – синтетическое горючее.
Современные технологии переработки углеводородов позволяют производить синтетическое дизельное топливо и синтетический бензин. В качестве сырья используются отходы деревообрабатывающей промышленности, сельского хозяйства и даже бытовой мусор. Особенности разработанных технологических процессов заключаются в том, что из одного и того же сырья могут получаться различные виды топлива.
Еще во время Второй мировой войны немцы учились не зависеть от нефти. С помощью синтеза Фишера-Тропша они добывали из каменного угля синтетическое топливо. Уголь измельчали, помещали в воду и нагревали до 800 градусов, после чего проводили каталитическую реакцию и конденсировали газообразные углеводороды в ректификационной трубе.
А еще во время войны ездили грузовики на дровах. Дрова, сгорая в условиях высокой влажности и недостатка кислорода, выделяли «синтезгаз», который и приводил в движение дизельные моторы. Но после войны производство заморозили из-за нерентабельности - нефть тогда была дешевой.
Первое в мире синтетическое дизельное топливо, в 2003-м году, разработала корпорация DaimlerChrysler.
Новое топливо, которое разработчики назвали BIOTROLL, производится из древесных отходов, а при его сгорании в атмосферу вообще не выбрасывается углекислый газ.
Биотопливо можно смешивать с обычной соляркой, улучшая экологические показатели дизельных двигателей, однако пока не получены точные данные о том, возможна ли эксплуатация современных дизельных двигателей только на новом виде топлива без проведения каких-либо доработок.
Первая заправка, на которой можно пополнить баки новым топливом, уже функционирует в Штутгарте.
Плюсы:
- можно получить требуемые характеристики топлива;
- в синтетическом дизтопливе отсутствует сера;
- выбросы вредных веществ ниже, чем при использовании «нефтяного» горючего;
- запасы сырья неограниченны.
Минусы:
- высокие затраты энергии для производства горючего;
- необходимы значительные вложения средств для создания предприятий по выпуску синтетического топлива и создание структуры накопления, поставки и подготовки сырья.
- Основы современного естествознания введение
- Раздел 1. Тематический план дисциплины
- Раздел 2.
- Краткий курс лекций
- Лекция 1.
- Естествознание в мировой культуре
- 1. Предмет, задачи, структура курса «Основы современного естествознания».
- 2. Естествознание в системе форм общественного сознания.
- 3. Философия, математика, гуманитарные и естественные науки и их объекты
- 4. Естественнонаучная и гуманитарная культуры. Специфика и взаимосвязь естественнонаучного и гуманитарного типов культур
- 5. Проблема постнеклассического межкультурного диалога естественных и гуманитарных наук
- Лекция 2. Особенности физического описания реальности Современные представления о движении, пространстве и времени.
- 1. Идеальные образы объектов реального мира (твердое тело, материальная точка, частица, вакуум, среда, поле, вихрь, волна)
- 2. Физические характеристики идеальных объектов и представление о способах их описания ( масса; заряды и их действие на расстоянии; заряды как источники полей; «свободные» поля, суперпозиция полей)
- 3. Единицы физических величин
- Лекция 3. Современные представления о движении, пространстве и времени
- 1. Движение и его виды. Относительность движения
- 2. Законы сохранения и их роль в формировании научной картины мира (законы сохранения энергии, импульса и момента импульса)
- 3. Пространство и время как основные свойства материи
- Лекция 4. Понятие теплоты и термодинамический способ описания действительности
- 1. Термодинамические системы и их макроскопические храктеристики
- 2. Теплота и механическая работа (закон сохранения энергии)
- 3. Обратимые и необратимые процессы. Равновесное состояние и флуктуации. Закон возрастания энтропии
- 4. Неравновесные системы и их характеристики
- Реакция Белоусова-Жаботинского
- 5. Бифуркации и аттракторы. Спонтанная самоорганизация в природе и обществе
- Лекция 5. Квантовые представления о строении вещества и физическая Вселенная
- 1. Квантовые представления о строении вещества (фотоэффект и эффект Комптона, опыты по дифракции электронов и фотонов).
- 2. Современные представления о строении атома (волновые свойства атомов и молекул; лазерное излучение)
- 3. Соотношение неопределенностей и квантово-волновой дуализм
- 4. Представление об элементарных частицах и их взаимодействии. Ядерные взаимодействия. Атомная и термоядерная энергетика
- 5. Квантовая инженерия в наномире
- Лекция 6. Элементарные частицы и физический эксперимент
- 1. Современные ускорители
- 2. Рождение и аннигиляция элементарных частиц
- 3. Виды взаимодействий элементарных частиц
- 4. Теория кварков
- Лекция 7. Элементы современной космологии (физическая Вселенная)
- 1. Космические объекты и методы их исследования
- 2. Солнечная система в мире галактик
- 3. Модель Большого взрыва
- 4. Звезды и их эволюция
- 5. Земля в свете антропного принципа
- Геохронологическая и стратиграфическая шкалы
- Географическая оболочка Земли
- Лекция 8. Система современного химического знания
- 1. Химия как наука, современная химическая картина мира (структурные уровни организации материи с точки зрения химии).
- 2. Основные понятия и законы химии (периодический закон и его значение)
- 3. Классификация химических веществ
- § 2. Теория строения органических соединений
- § 3. Классификация органических соединений
- § 4. Высокомолекулярные соединения (полимеры)
- 4. Теория химического строения вещества. Взаимосвязь между строением, свойствами и реакционной способностью вещества
- Лекция 9. Растворы. Химическая идентификация
- 1. Растворы и их особенности
- 2. Химическая идентификация
- 3. Химические процессы (реакции)
- 4. Химия экстремальных состояний
- Лекция 10. Современная химия: экономический и социальный аспекты
- 1. Масштабы современного химического производства
- 2. Проблемы сырьевых ресурсов и химия
- Металлы и их коррозия
- 3. Химические процессы и материалы (традиционные материалы - дерево, стекло, керамика; применение металлов и сплавов, силикатных материалов, полимеров, биологически активных веществ)
- 6.11. Традиционные материалы с новыми свойствами
- Синтетические материалы.
- 4. Материалы для создания носителей информации. Химия и нанотехнологии
- 5. Химико-энергетические процессы в природе и технике (альтернативные виды топлива, «зеленая химия»)
- Аккумуляторы для сотовых телефонов. Эффект памяти
- А теперь подведем итоги.
- Лекция 11. Роль химии в современном обществе
- 1. Экологические и социальные аспекты химии
- 2. Проблема переработки вторичных ресурсов
- 3. Химия и окружающая среда
- 4. Защита биосферы от химических загрязнений
- 5. Роль химии в решении проблем устойчивого развития цивилизации
- Лекция 12. Особенности современного биологического знания и его эволюция
- 1. Биология как наука и особенности биологического познания мира
- 2. Фундаментальные и частные биологические теории
- 3. Традиционный, физико-химический, эволюционный и биоинженерный периоды развития биологии. Основные достижения биологии в эти периоды
- 4. Генетическая революция в биологии
- 5. Синергетическая теория эволюции (глобальная эволюция)
- 6. Этические проблемы современной биологии
- Лекция 13. Современные концепции происхождения и сущности жизни
- 1. Феномен жизни и его исследование
- 2. Отличительные особенности живой и неживой материи
- 3. Основные концепции происхождения жизни
- 5. Идея трансформации биосферы в ноосферу и глобальный эволюционизм
- Лекция 14. Концепция структурных уровней организации живой материи
- 1. Уровни организации живой природы: молекулярно-генетический, онтогенетический, надорганизменный (популяционно-видовой), популяционно-биоценотический (биогеоценотический)
- 2. Биосферный уровень организации живой материи
- 3. В.И. Вернадский о роли «живого вещества»
- 4. Материальные основы появления жизни на Земле
- Концепция происхождения живого по гипотезе Опарина-Холдейна
- 5. Возникновение и роль многоклеточных организмов в формировании биосферы Земли Лекция 15. Человек, его место и роль в едином социоприродном комплексе
- 1. Человек как единство биологического, социального и духовного. Генезис человека
- 2. Факторы, закономерности и этапы антропосоциогенеза
- 3. Культура как фактор регуляции (агрессии) человека
- 4. Социобиология и проблема геннокультурной коэволюции
- 5. Биологические предпосылки возникновения социальности человека. Роль социальных факторов в становлении человека
- 4. Перспективы исследования космобиосоциальной сущности человека в современной биологии
- Биокатализ
- Генные технологии
- 8 8. Проблемы клонирования
- 2. Достижения и возможные негативные последствия биотехнологий
- 3. Поиск путей развития общества, сохраняющих целостность природы Глава 11 гармония трудовой деятельности людей и природы
- 11.1. Обновление энергосистем
- 11.2. Промышленность, автотранспорт и окружающая среда
- 11.3. Города и природа
- 11.4. Решение проблем утилизации
- 11.5. Перспективные материалы, технологии и окружающая среда
- 4. Ресурсы биосферы и демографические проблемы
- Лекция 17. Социальное измерение современного естествознания
- 1. Роль научного знания на современном этапе развития общества
- 2. Нелинейное освоение культурой результатов научной деятельности
- 3. Наука и сми
- 5.4. Экологические проблемы сегодня
- 4. Естествознание как основа современных технологий
- 5. Проблема моделирования социокультурных явлений
- Раздел 3.
- Семинар 2 . Взаимодействие естественнонаучного и гуманитарного знания
- Семинар 4. Концепции термодинамики
- Семинар 5 . Квантовые представления о строении вещества и физическая Вселенная
- Семинар 6 . Элементарные частицы и физический эксперимент
- Семинар 7 . Элементы современной космологии (физическая вселенная)
- Раздел 2. Химия в контексте устойчивого развития общества Семинар 8. Система современного химического знания
- Семинар 9 . Растворы. Химическая идентификация
- Семинар 10. Современная химия: экономический и социальный аспекты
- Семинар 11. Роль химии в современном обществе
- Раздел 3. Специфика, структура и проблемное поле современного биологического познания Семинар 12 . Особенности современного биологического знания и его эволюции
- Семинар 13 . Современные концепции происхождения и сущности жизни
- Семинар 14. Концепция структурных уровней организации живой материи
- Семинар 15. Человек, его место и роль в едином социоприродном комплексе
- Семинар 16 . Социальный аспект биологического познания
- Заключение. Социальное измерение современного естествознания Семинар 17. Перспективы развития естествознания и гуманитарных наук в 21 веке
- 3.2. Перечень вопросов к экзамену (зачету)
- 3.3. Учебно-методические материалы по дисциплине