1. Термодинамические системы и их макроскопические храктеристики
Физические свойства всех материальных тел реального мира рассматриваются двумя методами: статистическим и термодинамическим. Соответственно получили развитие такие физические теории как молекулярно-кинетическая (статистическая физика) и термодинамическая (термодинамика), которые рассматривают явления с разных позиций.
Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химического вещества. Термодинамикой называют учение о взаимосвязи и превращении энергии, теплоты и работы на основе термодинамических параметров.
В основе молекулярно-кинетической теории лежат три основных положения:
1. Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными и состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.
2. Атомы и молекулы находятся в непрерывном хаотическом движении.
3. Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.
1 |
Рисунок 1. Траектория броуновской частицы. |
Наиболее ярким экспериментальным подтверждением представлений молекулярно-кинетической теории о беспорядочном движении атомов и молекул является броуновское движение. Это тепловое движение мельчайших микроскопических частиц, взвешенных в жидкости или газе. Оно было открыто английским ботаником Р. Броуном (1827 г.). Броуновские частицы движутся под влиянием беспорядочных ударов молекул. Из-за хаотического теплового движения молекул эти удары никогда не уравновешивают друг друга. В результате скорость броуновской частицы беспорядочно меняется по модулю и направлению, а ее траектория представляет собой сложную зигзагообразную кривую (рис. 1). Теория броуновского движения была создана А. Эйнштейном (1905 г.). Экспериментально теория Эйнштейна была подтверждена в опытах французского физика Ж. Перрена (1908-1911 гг.).
Силы, действующие между двумя молекулами, зависят от расстояния между ними. Молекулы представляют собой сложные пространственные структуры, содержащие как положительные, так и отрицательные заряды. Если расстояние между молекулами достаточно велико, то преобладают силы межмолекулярного притяжения. На малых расстояниях преобладают силы отталкивания. Зависимости результирующей силы F и потенциальной энергии Ep взаимодействия между молекулами от расстояния между их центрами качественно изображены на рис. 2. При некотором расстоянии r = r0 сила взаимодействия обращается в нуль. Это расстояние условно можно принять за диаметр молекулы. Потенциальная энергия взаимодействия при r = r0 минимальна. Чтобы удалить друг от друга две молекулы, находящиеся на расстоянии r0, нужно сообщить им дополнительную энергию E0. Величина E0 называется глубиной потенциальной ямы или энергией связи.
2 |
Рисунок 2. Сила взаимодействия F и потенциальная энергия взаимодействия Ep двух молекул. F > 0 – сила отталкивания, F < 0 – сила притяжения. |
Молекулы имеют чрезвычайно малые размеры. Простые одноатомные молекулы имеют размер порядка 10–10 м. Сложные многоатомные молекулы могут иметь размеры в сотни и тысячи раз больше.
Беспорядочное хаотическое движение молекул называется тепловым движением. Кинетическая энергия теплового движения растет с возрастанием температуры. При низких температурах средняя кинетическая энергия молекулы может оказаться меньше глубины потенциальной ямы E0. В этом случае молекулы конденсируются в жидкое или твердое вещество; при этом среднее расстояние между молекулами будет приблизительно равно r0. При повышении температуры средняя кинетическая энергия молекулы становится больше E0, молекулы разлетаются, и образуется газообразное вещество.
В твердых телах молекулы совершают беспорядочные колебания около фиксированных центров (положений равновесия). Эти центры могут быть расположены в пространстве нерегулярным образом (аморфные тела) или образовывать упорядоченные объемные структуры (кристаллические тела).
В жидкостях молекулы имеют значительно большую свободу для теплового движения. Они не привязаны к определенным центрам и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Близко расположенные молекулы жидкости также могут образовывать упорядоченные структуры, содержащие несколько молекул. Это явление называется ближним порядком в отличие от дальнего порядка, характерного для кристаллических тел.
В газах расстояния между молекулами обычно значительно больше их размеров. Силы взаимодействия между молекулами на таких больших расстояниях малы, и каждая молекула движется вдоль прямой линии до очередного столкновения с другой молекулой или со стенкой сосуда. Среднее расстояние между молекулами воздуха при нормальных условиях порядка 10–8 м, то есть в десятки раз превышает размер молекул. Слабое взаимодействие между молекулами объясняет способность газов расширяться и заполнять весь объем сосуда. В пределе, когда взаимодействие стремится к нулю, мы приходим к представлению об идеальном газе.
В молекулярно-кинетической теории количество вещества принято считать пропорциональным числу частиц. Единица количества вещества называется молем (моль).
Моль – это количество вещества, содержащее столько же частиц (молекул), сколько содержится атомов в 0,012 кг углерода C12. Молекула углерода состоит из одного атома.
Таким образом, в одном моле любого вещества содержится одно и то же число частиц (молекул). Это число называется постоянной Авогадро NА:
NА = 6,02·1023 моль–1. |
Постоянная Авогадро – одна из важнейших постоянных в молекулярно-кинетической теории.
Количество вещества ν определяется как отношение числа N частиц (молекул) вещества к постоянной Авогадро NА:
|
Массу одного моля вещества принято называть молярной массой M. Молярная масса равна произведению массы m0 одной молекулы данного вещества на постоянную Авогадро:
M = NA · m0. |
Молярная масса выражается в килограммах на моль (кг/моль). Для веществ, молекулы которых состоят из одного атома, часто используется термин атомная масса.
За единицу массы атомов и молекул принимается 1/12 массы атома изотопа углерода C12 (с массовым числом 12). Она называется атомной единицей массы (а. е. м.):
1 а. е. м. = 1,66·10–27 кг. |
Эта величина почти совпадает с массой протона или нейтрона. Отношение массы атома или молекулы данного вещества к 1/12 массы атома углерода C12 называется относительной массой.
Простейшей моделью молекулярно-кинетической теории является модель идеального газа. В кинетической модели идеального газа молекулы рассматриваются как идеально упругие шарики, взаимодействующие между собой и со стенками только во время упругих столкновений. Суммарный объем всех молекул предполагается малым по сравнению с объемом сосуда, в котором находится газ. Модель идеального газа достаточно хорошо описывает поведение реальных газов в широком диапазоне давлений и температур. Задача молекулярно-кинетической теории состоит в том, чтобы установить связь между микроскопическими (масса, скорость, кинетическая энергия молекул) и макроскопическими параметрами (давление, газ, температура). Установление связи между микроскопическими и макроскопическими параметрами имеет большое значение для развития термодинамики, которая изучает связь и взаимопревращения различных видов энергии, теплоты и работы. В широком понимании термодинамическими параметрами называют признаки, характеризующие состояние тела или системы тел без учета его микроскопического строения. В этом случае под термодинамической системой понимают определенную совокупность тел, подвергающихся какому-либо воздействию. В основе изменения состояний термодинамической системы лежат процессы микроуровня.
В результате каждого столкновения между молекулами и молекул со стенкой скорости молекул могут изменяться по модулю и по направлению; на интервалах между последовательными столкновениями молекулы движутся равномерно и прямолинейно. В модели идеального газа предполагается, что все столкновения происходят по законам упругого удара, то есть подчиняются законам механики Ньютона.
Используя модель идеального газа, вычислим давление газа на стенку сосуда. В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υx скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υy скорости, параллельная стенке, остается неизменной (рис. 3).
1 |
Рисунок 3. Упругое столкновение молекулы со стенкой. |
Поэтому изменение импульса молекулы будет равно 2m0υx, где m0 – масса молекулы.
Выделим на стенке некоторую площадку S (рис. 4). За время Δt с этой площадкой столкнутся все молекулы, имеющие проекцию скорости υx, направленную в сторону стенки, и находящиеся в цилиндре с основанием площади S и высотой υxΔt.
2 |
Рисунок 4. Определение числа столкновений молекул с площадкой S. |
Пусть в единице объема сосуда содержатся n молекул; тогда число молекул в объеме цилиндра равно nSυxΔt. Но из этого числа лишь половина движется в сторону стенки, а другая половина движется в противоположном направлении и со стенкой не сталкивается. Следовательно, число ударов молекул о площадку S за время Δt равно Поскольку каждая молекула при столкновении со стенкой изменяет свой импульс на величину 2m0υx, то полное изменение импульса всех молекул, столкнувшихся за время Δt с площадкой S, равно По законам механики это изменение импульса всех столкнувшихся со стенкой молекул происходит под действием импульса силы FΔt, где F – некоторая средняя сила, действующая на молекулы со стороны стенки на площадке S. Но по 3-му закону Ньютона такая же по модулю сила действует со стороны молекул на площадку S. Поэтому можно записать:
|
Разделив обе части на SΔt, получим:
|
где p – давление газа на стенку сосуда.
При выводе этого соотношения предполагалось, что все n молекул, содержащихся в единице объема газа, имеют одинаковые проекции скоростей на ось X. На самом деле это не так.
В результате многочисленных соударений молекул газа между собой и со стенками в сосуде, содержащем большое число молекул, устанавливается некоторое статистическое распределение молекул по скоростям. При этом все направления векторов скоростей молекул оказываются равноправными (равновероятными), а модули скоростей и их проекции на координатные оси подчиняются определенным закономерностям. Распределение молекул газа по модулю скоростей называется распределением Максвелла (1860 г.). Дж. Максвелл вывел закон распределения молекул газа по скоростям, исходя из основных положений молекулярно-кинетической теории. На рис. 3.2.3 представлены типичные кривые распределения молекул по скоростям. По оси абсцисс отложен модуль скорости, а по оси ординат – относительное число молекул, скорости которых лежат в интервале от υ до υ + Δυ. Это число равно площади выделенного столбика на рис. 5.
3 |
Рисунок 5. Распределение молекул по скоростям. T2 > T1. |
Характерными параметрами распределения Максвелла являются наиболее вероятная скорость υв, соответствующая максимуму кривой распределения, и среднеквадратичная скорость где – среднее значение квадрата скорости.
С ростом температуры максимум кривой распределения смещается в сторону больших скоростей, при этом υв и υкв увеличиваются.
Чтобы уточнить формулу для давления газа на стенку сосуда, предположим, что все молекулы, содержащиеся в единице объема, разбиты на группы, содержащие n1, n2, n3 и т. д. молекул с проекциями скоростей υx1, υx2, υx3 и т. д. соответственно. При этом Каждая группа молекул вносит свой вклад в давление газа. В результате соударений со стенкой молекул с различными значениями проекций υxi скоростей возникает суммарное давление
|
Входящая в это выражение сумма – это сумма квадратов проекций υx всех n молекул в единичном объеме газа. Если эту сумму разделить на n, то мы получим среднее значение квадрата проекции скорости молекул:
|
Теперь формулу для давления газа можно записать в виде
|
Так как все направления для векторов скоростей молекул равновероятны, среднее значение квадратов их проекций на координатные оси равны между собой: (формула хаоса)
|
Последнее равенство вытекает из формулы:
Формула для среднего давления газа на стенку сосуда запишется в виде
|
Это уравнение устанавливает связь между давлением p идеального газа, массой молекулы m0, концентрацией молекул n, средним значением квадрата скорости и средней кинетической энергией поступательного движения молекул. Его называют основным уравнением молекулярно-кинетической теории газов.
Таким образом, давление газа равно двум третям средней кинетической энергии поступательного движения молекул, содержащихся в единице объема.
В основное уравнение молекулярно-кинетической теории газов входит произведение концентрации молекул n на среднюю кинетическую энергию поступательного движения. Если предположить, что газ находится в сосуде неизменного объема V, то (N – число молекул в сосуде). В этом случае изменение давления Δp пропорционально изменению средней кинетической энергии.
Возникают вопросы: каким образом можно на опыте изменять среднюю кинетическую энергию движения молекул в сосуде неизменного объема? Какую физическую величину нужно изменить, чтобы изменилась средняя кинетическая энергия Такой величиной в физике является температура.
Понятие температуры тесно связано с понятием теплового равновесия. Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, называется количеством теплоты.
Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура – это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии. Возможность введения понятия температуры следует из опыта и носит название нулевого закона термодинамики.
Для измерения температуры используются физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо физического параметра. Для создания термометра необходимо выбрать термометрическое вещество (например, ртуть, спирт) и термометрическую величину, характеризующую свойство вещества (например, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании).
Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются заданными. Чаще всего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой – это смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении. По температурной шкале Цельсия точке плавления льда приписывается температура 0 °С, а точке кипения воды – 100 °С. Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками 0 °С и 100 °С принимается равным 1 °С. В ряде стран (США) широко используется шкала Фаренгейта (TF), в которой температура замерзающей воды принимается равной 32 °F, а температура кипения воды равной 212 °F. Следовательно,
|
Особое место в физике занимают газовые термометры (рис. 6), в которых термометрическим веществом является разреженный газ (гелий, воздух) в сосуде неизменного объема (V = const), а термометрической величиной – давление газа p. Опыт показывает, что давление газа (при V = const) растет с ростом температуры, измеренной по шкале Цельсия.
4 |
Рисунок 6. Газовый термометр с постоянным объемом. |
Чтобы проградуировать газовый термометр постоянного объема, можно измерить давление при двух значениях температуры (например, 0 °C и 100 °C), нанести точки p0 и p100 на график, а затем провести между ними прямую линию (рис. 7). Используя полученный таким образом калибровочный график, можно определять температуры, соответствующие другим значениям давления. Экстраполируя график в область низких давлений, можно определить некоторую «гипотетическую» температуру, при которой давление газа стало бы равным нулю. Опыт показывает, что эта температура равна –273,15 °С и не зависит от свойств газа. Невозможно на опыте получить путем охлаждения газ в состоянии с нулевым давлением, так как при очень низких температурах все газы переходят в жидкие или твердые состояния.
5 |
Рисунок 7. Зависимость давления газа от температуры при V = const. |
Английский физик У. Кельвин (Томсон) в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы (шкала Кельвина). В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута:
TК = TС + 273,15. |
В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой К. Например, комнатная температура TС = 20 °С по шкале Кельвина равна TК = 293,15 К. Температурная шкала Кельвина называется абсолютной шкалой температур. Она оказывается наиболее удобной при построении физических теорий.
Нет необходимости привязывать шкалу Кельвина к двум фиксированным точкам – точке плавления льда и точке кипения воды при нормальном атмосферном давлении, как это принято в шкале Цельсия. Кроме точки нулевого давления газа, которая называется абсолютным нулем температуры, достаточно принять еще одну фиксированную опорную точку. В шкале Кельвина в качестве такой точки используется температура тройной точки воды (0,01 °С), в которой в тепловом равновесии находятся все три фазы – лед, вода и пар. По шкале Кельвина температура тройной точки принимается равной 273,16 К.
Газовые термометры громоздки и неудобны для практического применения: они используются в качестве прецизионного стандарта для калибровки других термометров.
Таким образом, давление разреженного газа в сосуде постоянного объема V изменяется прямо пропорционально его абсолютной температуре: p ~ T. С другой стороны, опыт показывает, что при неизменных объеме V и температуре T давление газа изменяется прямо пропорционально отношению количества вещества ν в данном сосуде к объему V сосуда
|
где N – число молекул в сосуде, NА – постоянная Авогадро, n = N / V – концентрация молекул (то есть число молекул в единице объема сосуда). Объединяя эти соотношения пропорциональности, можно записать:
|
где k – некоторая универсальная для всех газов постоянная величина. Ее называют постоянной Больцмана, в честь австрийского физика Л. Больцмана (1844–1906 гг.), одного из создателей молекулярно-кинетической теории. Постоянная Больцмана – одна из фундаментальных физических констант. Ее численное значение в СИ равно:
k = 1,38·10–23 Дж/К. |
Сравнивая соотношения p = nkT с основным уравнением молекулярно-кинетической теории газов, можно получить:
|
Средняя кинетическая энергия хаотического движения молекул газа прямо пропорциональна абсолютной температуре.
Таким образом, температура есть мера средней кинетической энергии поступательного движения молекул.
- Основы современного естествознания введение
- Раздел 1. Тематический план дисциплины
- Раздел 2.
- Краткий курс лекций
- Лекция 1.
- Естествознание в мировой культуре
- 1. Предмет, задачи, структура курса «Основы современного естествознания».
- 2. Естествознание в системе форм общественного сознания.
- 3. Философия, математика, гуманитарные и естественные науки и их объекты
- 4. Естественнонаучная и гуманитарная культуры. Специфика и взаимосвязь естественнонаучного и гуманитарного типов культур
- 5. Проблема постнеклассического межкультурного диалога естественных и гуманитарных наук
- Лекция 2. Особенности физического описания реальности Современные представления о движении, пространстве и времени.
- 1. Идеальные образы объектов реального мира (твердое тело, материальная точка, частица, вакуум, среда, поле, вихрь, волна)
- 2. Физические характеристики идеальных объектов и представление о способах их описания ( масса; заряды и их действие на расстоянии; заряды как источники полей; «свободные» поля, суперпозиция полей)
- 3. Единицы физических величин
- Лекция 3. Современные представления о движении, пространстве и времени
- 1. Движение и его виды. Относительность движения
- 2. Законы сохранения и их роль в формировании научной картины мира (законы сохранения энергии, импульса и момента импульса)
- 3. Пространство и время как основные свойства материи
- Лекция 4. Понятие теплоты и термодинамический способ описания действительности
- 1. Термодинамические системы и их макроскопические храктеристики
- 2. Теплота и механическая работа (закон сохранения энергии)
- 3. Обратимые и необратимые процессы. Равновесное состояние и флуктуации. Закон возрастания энтропии
- 4. Неравновесные системы и их характеристики
- Реакция Белоусова-Жаботинского
- 5. Бифуркации и аттракторы. Спонтанная самоорганизация в природе и обществе
- Лекция 5. Квантовые представления о строении вещества и физическая Вселенная
- 1. Квантовые представления о строении вещества (фотоэффект и эффект Комптона, опыты по дифракции электронов и фотонов).
- 2. Современные представления о строении атома (волновые свойства атомов и молекул; лазерное излучение)
- 3. Соотношение неопределенностей и квантово-волновой дуализм
- 4. Представление об элементарных частицах и их взаимодействии. Ядерные взаимодействия. Атомная и термоядерная энергетика
- 5. Квантовая инженерия в наномире
- Лекция 6. Элементарные частицы и физический эксперимент
- 1. Современные ускорители
- 2. Рождение и аннигиляция элементарных частиц
- 3. Виды взаимодействий элементарных частиц
- 4. Теория кварков
- Лекция 7. Элементы современной космологии (физическая Вселенная)
- 1. Космические объекты и методы их исследования
- 2. Солнечная система в мире галактик
- 3. Модель Большого взрыва
- 4. Звезды и их эволюция
- 5. Земля в свете антропного принципа
- Геохронологическая и стратиграфическая шкалы
- Географическая оболочка Земли
- Лекция 8. Система современного химического знания
- 1. Химия как наука, современная химическая картина мира (структурные уровни организации материи с точки зрения химии).
- 2. Основные понятия и законы химии (периодический закон и его значение)
- 3. Классификация химических веществ
- § 2. Теория строения органических соединений
- § 3. Классификация органических соединений
- § 4. Высокомолекулярные соединения (полимеры)
- 4. Теория химического строения вещества. Взаимосвязь между строением, свойствами и реакционной способностью вещества
- Лекция 9. Растворы. Химическая идентификация
- 1. Растворы и их особенности
- 2. Химическая идентификация
- 3. Химические процессы (реакции)
- 4. Химия экстремальных состояний
- Лекция 10. Современная химия: экономический и социальный аспекты
- 1. Масштабы современного химического производства
- 2. Проблемы сырьевых ресурсов и химия
- Металлы и их коррозия
- 3. Химические процессы и материалы (традиционные материалы - дерево, стекло, керамика; применение металлов и сплавов, силикатных материалов, полимеров, биологически активных веществ)
- 6.11. Традиционные материалы с новыми свойствами
- Синтетические материалы.
- 4. Материалы для создания носителей информации. Химия и нанотехнологии
- 5. Химико-энергетические процессы в природе и технике (альтернативные виды топлива, «зеленая химия»)
- Аккумуляторы для сотовых телефонов. Эффект памяти
- А теперь подведем итоги.
- Лекция 11. Роль химии в современном обществе
- 1. Экологические и социальные аспекты химии
- 2. Проблема переработки вторичных ресурсов
- 3. Химия и окружающая среда
- 4. Защита биосферы от химических загрязнений
- 5. Роль химии в решении проблем устойчивого развития цивилизации
- Лекция 12. Особенности современного биологического знания и его эволюция
- 1. Биология как наука и особенности биологического познания мира
- 2. Фундаментальные и частные биологические теории
- 3. Традиционный, физико-химический, эволюционный и биоинженерный периоды развития биологии. Основные достижения биологии в эти периоды
- 4. Генетическая революция в биологии
- 5. Синергетическая теория эволюции (глобальная эволюция)
- 6. Этические проблемы современной биологии
- Лекция 13. Современные концепции происхождения и сущности жизни
- 1. Феномен жизни и его исследование
- 2. Отличительные особенности живой и неживой материи
- 3. Основные концепции происхождения жизни
- 5. Идея трансформации биосферы в ноосферу и глобальный эволюционизм
- Лекция 14. Концепция структурных уровней организации живой материи
- 1. Уровни организации живой природы: молекулярно-генетический, онтогенетический, надорганизменный (популяционно-видовой), популяционно-биоценотический (биогеоценотический)
- 2. Биосферный уровень организации живой материи
- 3. В.И. Вернадский о роли «живого вещества»
- 4. Материальные основы появления жизни на Земле
- Концепция происхождения живого по гипотезе Опарина-Холдейна
- 5. Возникновение и роль многоклеточных организмов в формировании биосферы Земли Лекция 15. Человек, его место и роль в едином социоприродном комплексе
- 1. Человек как единство биологического, социального и духовного. Генезис человека
- 2. Факторы, закономерности и этапы антропосоциогенеза
- 3. Культура как фактор регуляции (агрессии) человека
- 4. Социобиология и проблема геннокультурной коэволюции
- 5. Биологические предпосылки возникновения социальности человека. Роль социальных факторов в становлении человека
- 4. Перспективы исследования космобиосоциальной сущности человека в современной биологии
- Биокатализ
- Генные технологии
- 8 8. Проблемы клонирования
- 2. Достижения и возможные негативные последствия биотехнологий
- 3. Поиск путей развития общества, сохраняющих целостность природы Глава 11 гармония трудовой деятельности людей и природы
- 11.1. Обновление энергосистем
- 11.2. Промышленность, автотранспорт и окружающая среда
- 11.3. Города и природа
- 11.4. Решение проблем утилизации
- 11.5. Перспективные материалы, технологии и окружающая среда
- 4. Ресурсы биосферы и демографические проблемы
- Лекция 17. Социальное измерение современного естествознания
- 1. Роль научного знания на современном этапе развития общества
- 2. Нелинейное освоение культурой результатов научной деятельности
- 3. Наука и сми
- 5.4. Экологические проблемы сегодня
- 4. Естествознание как основа современных технологий
- 5. Проблема моделирования социокультурных явлений
- Раздел 3.
- Семинар 2 . Взаимодействие естественнонаучного и гуманитарного знания
- Семинар 4. Концепции термодинамики
- Семинар 5 . Квантовые представления о строении вещества и физическая Вселенная
- Семинар 6 . Элементарные частицы и физический эксперимент
- Семинар 7 . Элементы современной космологии (физическая вселенная)
- Раздел 2. Химия в контексте устойчивого развития общества Семинар 8. Система современного химического знания
- Семинар 9 . Растворы. Химическая идентификация
- Семинар 10. Современная химия: экономический и социальный аспекты
- Семинар 11. Роль химии в современном обществе
- Раздел 3. Специфика, структура и проблемное поле современного биологического познания Семинар 12 . Особенности современного биологического знания и его эволюции
- Семинар 13 . Современные концепции происхождения и сущности жизни
- Семинар 14. Концепция структурных уровней организации живой материи
- Семинар 15. Человек, его место и роль в едином социоприродном комплексе
- Семинар 16 . Социальный аспект биологического познания
- Заключение. Социальное измерение современного естествознания Семинар 17. Перспективы развития естествознания и гуманитарных наук в 21 веке
- 3.2. Перечень вопросов к экзамену (зачету)
- 3.3. Учебно-методические материалы по дисциплине