Биотический потенциал насекомых
Предположим, что самка данного вида откладывает в среднем 200 яиц (плодовитость F равна 200) и смертность на протяжении всего развития равна нулю. Если соотношение полов в потомстве, как чаще всего бывает 1:1 (доля самок q= 0,5), то это означает, что в первом поколении будетFq т.е. 200 0,5 = 100 самок. Каждая из этих самок в следующем поколении даст жизнь еще сотне самок, в результате чего во втором поколении будет 10000 самок. Очевидно, что вn–ном поколении число самок может быть рассчитано по следующей формуле:
Если же исходно мы имеем не одну самку, а N самок, то через nпоколений их будет:
(1)
Очевидно, что при таких условиях численность популяции будет круто возрастать по экспоненте (степенной функции). Смена поколений все же занимает некоторое время. Тогда скорость изменения численности при большом количестве поколений или их быстрой смене можно представить как результат деления прироста численности на интервал времени(абсолютная скорость роста популяции), или из расчета на исходное число особей-
При последовательном уменьшении интервала времени (0) мы получаем мгновенную скорость роста популяции –r (биотический потенциал):
(2)
Возвращаясь к формуле роста популяции (1), мы можем теперь ее написать следующим образом:
(3)
где – численность популяции через времяt, N– исходная численность популяции, е – основание натуральных логарифмов,r– биотический потенциал,t– интервал времени. График этой экспоненциальной (показательной) функции представлен на рис.27. Если логарифмировать формулу 3, получим следующее выражение:
(4)
График этой функции – прямая линия. Биотический потенциал на этом графике может быть представлен как тангенс угла наклона графика к оси абсцисс. Очевидно, что биотический потенциал – не чисто умозрительная категория. Зная численность популяции Nв момент времениt, и последующую численность Nв моментt, можно определить биотический потенциал по формуле:
(5)
В начале мы приняли, что смертность насекомых в течение развития равна нулю. При такой ситуации биотический потенциал будет максимально возможным в данных условиях. В природе же это условие практически никогда не выполняется и определяемый биотический потенциал будет определяться разностью между плодовитостью и смертностью. Благодаря стремлению размножаться, насекомые могли бы увеличивать свою численность беспредельно, если бы не тормозящие рост популяции факторы, снижающие плодовитость или приводящие часть насекомых к гибели. Такое сопротивление средыможно определить как разность между максимально возможным и реально наблюдаемым биотическим потенциалом.
Насекомые, будучи мелкими существами отличаются исключительно высоким биотическим потенциалом. Среди них зарегистрированы величины этого потенциала 0,5–0,8 (недельный прирост популяции), а у тлей – даже 0,3 в сутки. Наиболее высокий среди позвоночных животных потенциал отмечен также у самых мелких форм – грызунов. Однако недельный потенциал у этих животных не превышает 0,1.
Естественно, что у насекомых r–стратегов биотический потенциал всегда выше, чем у К–стратегов, которые приспособлены к существованию в пределах узкой экологической ниши. При высоком биотическом потенциале К–стратеги разрушили бы необходимый для их существования биоценоз.
Подчеркнем, что высокое значение биотического потенциала означает возможность возникновения резких вспышек численности, опасных для хозяйственной деятельности человека. Кроме того, способность быстро увеличивать свою численность является основой для использования насекомых как источника животного белка. Скорость наращивания биомассы у насекомых гораздо выше, чем у каких–либо других животных, за исключением, пожалуй, ракообразных. Насекомые могут быть белковой основой для корма домашней птицы, для рыб и, в какой–то мере, для скота. Добавим, что в странах Юго-Восточной Азии насекомые являются обычной пищей человека. Поэтому разведение насекомых для кормов, а может быть, и пищи является одной из перспектив обеспечить жизнь быстро растущего человечества.
Рис.27. Рост численности популяции без ограничивающих воздействий. Показан рост численности одной и той же гипотетической популяции в арифметическом (слева) и логарифмическом (справа) масштабе (по Ю.Одуму, 1986)
- Предисловие
- Введение Предмет экологии насекомых
- Экология насекомых и современное человечество
- Насекомые полезные и вредные
- Насекомые – вершина эволюции животного мира
- Факторы, ограничивающие размеры насекомых
- Преимущества и недостатки мелких размеров
- Другие особенности насекомых, приведшие к их расцвету
- Глава 1. Абиотические факторы среды и насекомые
- 1. Основные положения аутэкологии насекомых
- Абиотические и биотические факторы среды
- Макро, мезо– и микроклимат
- Основные принципы воздействия абиотических факторов
- Реакции насекомых на неблагоприятные условия
- 2. Свет
- Общая характеристика фактора, его источники и измерение
- Воздействие света на насекомых
- Предпочитаемая освещенность
- Лет насекомых на искусственный свет
- Практическое использование лета насекомых на свет
- Роль ультрафиолетового излучения в жизни насекомых
- Роль инфракрасного излучения в жизни насекомых
- Роль света в пространственной ориентации насекомых
- 3. Температура Общая характеристика фактора.
- Измерения температуры и термостатирование.
- Влияние температуры на поведение насекомых
- Влияние на насекомых низких и высоких температур
- Влияние температуры на развитие насекомых.
- Влияние температуры на морфологию и окраску
- Термопреферендум
- 4. Влажность Общая характеристика фактора и его измерение
- Влияние влажности на насекомых
- 5. Осадки
- 6. Атмосферное давление
- 7. Ветер
- 8. Сила тяжести
- 9. Электрические факторы
- 10. Геомагнитное поле
- 11. Электромагнитные колебания
- 12. Геомагнитные бури
- Глава 2. Биологические ритмы
- 1. Основные понятия
- 2. Суточные ритмы Суточная периодичность среды и активность насекомых
- Методы изучения суточных ритмов
- Распределение активности во времени суток
- Сравнение ритмов разных видов подвижности и активности
- Вариации ритмов активности
- 3. Эндогенный суточный ритм Проявления эндогенного ритма в природе и лаборатории
- Экологическое значение эндогенного ритма
- Суточный ритм чувствительности организма насекомого
- Факторы среды – датчики времени
- Время потенциальной готовности
- Циркадианные ритмы
- 4. Сезонные ритмы Согласование жизнедеятельности насекомых с сезоном
- Сезонные миграции насекомых
- Сезонный покой
- Диапауза
- Индукция диапаузы внешними факторами
- Фотопериодическая реакция (фпр)
- Стадия развития, чувствительная к фотопериоду
- Фотопериодическая реакция и температура
- Географическая изменчивость фпр
- Реактивация
- Сезонные изменения чувствительности к фотопериоду
- Количественные и качественные фпг
- Другие проявления сезонности у насекомых
- Сезонные адаптации паразитов и общественных насекомых
- Сезонная периодичность–практические приложения
- 5. Лунные и приливные ритмы
- Глава 3. Популяции насекомых
- 1. Популяции в пределах ареала, их полиморфизм и генофонд Границы между популяциями, иерархия популяций
- Географическая популяция – аллопатрическая дивергенция
- Экологические расы – парапатрическая дивергенция
- Сезонные расы – симпатрическая дивергенция
- Биологические расы – симпатрическая дивергенция
- Полиморфизм в популяциях
- Основание культуры насекомых
- Изменения генофонда популяций
- Популяции насекомых при смене корма
- 2. Характер размещения насекомых на местности
- Равномерное размещение
- Случайное размещение
- Агрегированное размещение
- 3. Учет численности насекомых
- Простейшие методы учета численности
- Учет численности популяций с помощью проб
- Учет с фиксированным уровнем точности и метод обратного биномиального выбора
- Метод последовательного учета
- Метод корреляционных функций
- Методы учета относительной численности
- 4. Возрастная и половая структура популяции
- Возрастной состав популяции
- Таблицы выживания
- Половой состав популяции
- Партеногенез
- 5. Динамика численности популяций
- Биотический потенциал насекомых
- Роль абиотических факторов среды.
- Конкуренция между особями одного вида
- Конкуренция между видами
- Взаимодействия насекомого–фитофага и растения
- Эпизоотии
- Модифицирующее и регулирующее воздействие факторов.
- Фазовый портрет динамики численности
- Принцип ультрастабильности
- Типы динамики численности
- Модели динамики численности
- Управление популяциями
- Глава 4. Насекомые в экосистемах
- 1. Изучение видового состава
- 2. Биомасса и поток энергии
- 3. Экологические ниши и жизненные формы Экологические ниши
- Жизненные формы
- 4. Взаимосвязи в экосистемах
- Негативные и позитивные взаимодействия в популяциях.
- Потребности и взаимодействия в экосистемах
- 5. Сукцессии
- Конструктивные сукцессии
- Деструктивные сукцессии
- 6. Антропогенные экосистемы
- Агробиоценозы
- Насекомые города
- Культуры насекомых
- Мониторинг и антропогенные воздействия
- Охрана насекомых
- Глава 5. Экологическая эволюция насекомых
- 1. Предки насекомых и их местобитание
- 2. Местообитания древнейших насекомых на суше
- 3. Возникновение полета и экологическая дифференциация имаго и личинок
- 4.Эволюция питания насекомых
- 5. Коэволюция насекомых и растений
- Основная литература
- Оглавление
- Глава 1. Абиотические факторы среды и насекомые……………………..9
- Глава 2. Биологические ритмы…………………………………………………… 48
- Глава 3. Популяции насекомых…………………………………………................84
- Глава 4. Насекомые в экосистемах…………………………………………….140
- Глава 5. Экологическая эволюция насекомых………………………….170