Изменения генофонда популяций
Согласно известному правилу Харди–Вайнберга, частоты генов в популяции в течение определенного времени достигают равновесия и далее их соотношение в генофонде популяции остается неизменным. Однако это возможно лишь при условии, что вообще отсутствует какой–либо отбор или миграции особей с определенными свойствами, а скрещивание между особями происходит случайно (абсолютная панмиксия). Кроме того, численность такой популяции должна быть бесконечно большой. Очевидно, что в природе эти условия выполнимы лишь в определенной степени, а это означает, что генофонд природной популяции не может быть абсолютно стабильным.
Генофонд может обогащаться за счет прибытия мигрантов из других популяций, а также за счет мутаций. Концентрации тех или иных аллелей могут меняться в результате воздействия внешних условий, приводящих к гибели или снижению плодовитости особей с тем или иным генотипом, т.е. в результате отбора. Правда, при прекращении отбора в случае сохранения гетерозиготности восстанавливаются прежние частоты генов. Генофонд, популяции может быть обеднен при регулярной утечке обладающих определенными свойствами мигрантов.
Другая причина обеднения генофонда связана с так называемым дрейфом геновпри малой численности популяции. Механизм этого явления достаточно четко описан в "Курсе общей энтомологии" Ю. А. Захватами (1986). Приведем здесь отрывок из этой книги.
"В основу концепции дрейфа генов положены представления о случайном характере распределения частот генов и непредставительности (не презентативности) малых выборок. Обратимся к обычному для статистиков примеру. Из урны, заполненной 5000 белыми и 5000 черными шарам (символизируют для нас аллели А и а), вынем подряд первую тысячу шаров и убедимся, что около половины из них будут белыми. Допустим, что мы вынули 514 белых и 486 черных шаров. Увеличив каждое из этих чисел в 10 раз (размножение – В.Ч.), заполним вторую урну 5140 белыми и 4860 черными шарами и, перемешав их, повторим процедуру. Возможно, что из 1000 взятых на этот раз шаров 506 окажутся черными, а 494 белыми. Многократно повторив данный эксперимент, можно убедиться, что число шаров разного цвета каждый раз будет близким к 500.
Однако если мы заполним урну только 100 шарами и вынем первые 10, то, возможно, среди них белых (или черных) будет несколько больше половины, например 6. Теперь возьмем 60 белых и 40 черных шаров и, перемешав их в урне, вынем снова первые 10. Скорее всего, число белы шаров будет большим и, многократно повторяя эту процедуру, мы увидим что число черных шаров становится все меньшим и, наконец, они все будут замещены только белыми. Неизбежное следствие наблюдаемого при этом "дрейфа генов" – утрата одних и фиксация других аллелей, а это, в свою очередь, приводит к сокращению гетерозиготности популяций и затуханию связанной с этим изменчивости. Скорость этого затухания прямо пропорциональна величине популяции, чем она меньше, тем быстрее проявляются все последствия дрейфа".
Действительно, практика разведения насекомых показывает, что дрейф генов становится заметным лишь при исходной численности популяции менее 100 особей. Если же исходная численность более 500, дрейфом генов можно пренебречь.
Очевидно, что при культивировании насекомых во многих случая можно обнаружить дрейф генов и соответствующее уменьшение гетерозиготности. Сохранять гетерозиготность по генам, не имеющим существенного значения для необходимых свойств культуры, и тем самым предотвращать ее возможное вырождение можно, сочетая инбридинг с аутбридингом (неродственным спариванием). Однако это целесообразно лишь в том случае, если гетерозис связан со сверхдоминированием по генам, влияющих на приспособленность. Если же инбредная депрессия обусловлена тем, что вредные рецессивные мутации становятся гомозиготными, максимальный эффект достигается отбором наилучших инбредных линий. Во многих же случаях дрейф генов вообще не проявляется, так как ему противостоит отбор по адаптивным признакам.
Подчеркнем, что дрейф генов может иметь место и в природе при существенном сокращении численности популяций по любым причинам: от неблагоприятной погоды, эпизоотии, применения инсектицидов, или любых других защитных мероприятий. Возрождающаяся после таких воздействий популяция имеет уже несколько иной генофонд, причем изменения популяции направляются отбором в сторону наибольшей устойчивости к этим неблагоприятным воздействиям. Аналогичная потеря богатства генофонда, вызванная дрейфом генов, имеет место в природе при заселении новой территории незначительным количеством мигрантов. Однако если поток мигрантов продолжается, происходит встречное обогащение генофонда
Другая причина вырождения лабораторной культуры – это лабораторные условия, как правило, обеспечивающие сохранение и размножение ослабленных особей с неблагоприятным генотипом, которые неминуемо погибли бы в природе. Более того, эти ослабленные особи получают преимущество в размножении, так как они обычно менее агрессивны и лучше переносят высокую плотность популяции, которая в лаборатории обычно на несколько порядков выше, чем в природе,
Тем не менее известно много случаев, когда лабораторная культура стабилизируется и может существовать на протяжении неопределенного числа поколений. Как мы отмечали выше, здесь многое зависит от того, насколько удачно взят исходный материал. Во многих же случаях после 3–4 поколений культура насекомых погибает и приходится брать новый материал.
- Предисловие
- Введение Предмет экологии насекомых
- Экология насекомых и современное человечество
- Насекомые полезные и вредные
- Насекомые – вершина эволюции животного мира
- Факторы, ограничивающие размеры насекомых
- Преимущества и недостатки мелких размеров
- Другие особенности насекомых, приведшие к их расцвету
- Глава 1. Абиотические факторы среды и насекомые
- 1. Основные положения аутэкологии насекомых
- Абиотические и биотические факторы среды
- Макро, мезо– и микроклимат
- Основные принципы воздействия абиотических факторов
- Реакции насекомых на неблагоприятные условия
- 2. Свет
- Общая характеристика фактора, его источники и измерение
- Воздействие света на насекомых
- Предпочитаемая освещенность
- Лет насекомых на искусственный свет
- Практическое использование лета насекомых на свет
- Роль ультрафиолетового излучения в жизни насекомых
- Роль инфракрасного излучения в жизни насекомых
- Роль света в пространственной ориентации насекомых
- 3. Температура Общая характеристика фактора.
- Измерения температуры и термостатирование.
- Влияние температуры на поведение насекомых
- Влияние на насекомых низких и высоких температур
- Влияние температуры на развитие насекомых.
- Влияние температуры на морфологию и окраску
- Термопреферендум
- 4. Влажность Общая характеристика фактора и его измерение
- Влияние влажности на насекомых
- 5. Осадки
- 6. Атмосферное давление
- 7. Ветер
- 8. Сила тяжести
- 9. Электрические факторы
- 10. Геомагнитное поле
- 11. Электромагнитные колебания
- 12. Геомагнитные бури
- Глава 2. Биологические ритмы
- 1. Основные понятия
- 2. Суточные ритмы Суточная периодичность среды и активность насекомых
- Методы изучения суточных ритмов
- Распределение активности во времени суток
- Сравнение ритмов разных видов подвижности и активности
- Вариации ритмов активности
- 3. Эндогенный суточный ритм Проявления эндогенного ритма в природе и лаборатории
- Экологическое значение эндогенного ритма
- Суточный ритм чувствительности организма насекомого
- Факторы среды – датчики времени
- Время потенциальной готовности
- Циркадианные ритмы
- 4. Сезонные ритмы Согласование жизнедеятельности насекомых с сезоном
- Сезонные миграции насекомых
- Сезонный покой
- Диапауза
- Индукция диапаузы внешними факторами
- Фотопериодическая реакция (фпр)
- Стадия развития, чувствительная к фотопериоду
- Фотопериодическая реакция и температура
- Географическая изменчивость фпр
- Реактивация
- Сезонные изменения чувствительности к фотопериоду
- Количественные и качественные фпг
- Другие проявления сезонности у насекомых
- Сезонные адаптации паразитов и общественных насекомых
- Сезонная периодичность–практические приложения
- 5. Лунные и приливные ритмы
- Глава 3. Популяции насекомых
- 1. Популяции в пределах ареала, их полиморфизм и генофонд Границы между популяциями, иерархия популяций
- Географическая популяция – аллопатрическая дивергенция
- Экологические расы – парапатрическая дивергенция
- Сезонные расы – симпатрическая дивергенция
- Биологические расы – симпатрическая дивергенция
- Полиморфизм в популяциях
- Основание культуры насекомых
- Изменения генофонда популяций
- Популяции насекомых при смене корма
- 2. Характер размещения насекомых на местности
- Равномерное размещение
- Случайное размещение
- Агрегированное размещение
- 3. Учет численности насекомых
- Простейшие методы учета численности
- Учет численности популяций с помощью проб
- Учет с фиксированным уровнем точности и метод обратного биномиального выбора
- Метод последовательного учета
- Метод корреляционных функций
- Методы учета относительной численности
- 4. Возрастная и половая структура популяции
- Возрастной состав популяции
- Таблицы выживания
- Половой состав популяции
- Партеногенез
- 5. Динамика численности популяций
- Биотический потенциал насекомых
- Роль абиотических факторов среды.
- Конкуренция между особями одного вида
- Конкуренция между видами
- Взаимодействия насекомого–фитофага и растения
- Эпизоотии
- Модифицирующее и регулирующее воздействие факторов.
- Фазовый портрет динамики численности
- Принцип ультрастабильности
- Типы динамики численности
- Модели динамики численности
- Управление популяциями
- Глава 4. Насекомые в экосистемах
- 1. Изучение видового состава
- 2. Биомасса и поток энергии
- 3. Экологические ниши и жизненные формы Экологические ниши
- Жизненные формы
- 4. Взаимосвязи в экосистемах
- Негативные и позитивные взаимодействия в популяциях.
- Потребности и взаимодействия в экосистемах
- 5. Сукцессии
- Конструктивные сукцессии
- Деструктивные сукцессии
- 6. Антропогенные экосистемы
- Агробиоценозы
- Насекомые города
- Культуры насекомых
- Мониторинг и антропогенные воздействия
- Охрана насекомых
- Глава 5. Экологическая эволюция насекомых
- 1. Предки насекомых и их местобитание
- 2. Местообитания древнейших насекомых на суше
- 3. Возникновение полета и экологическая дифференциация имаго и личинок
- 4.Эволюция питания насекомых
- 5. Коэволюция насекомых и растений
- Основная литература
- Оглавление
- Глава 1. Абиотические факторы среды и насекомые……………………..9
- Глава 2. Биологические ритмы…………………………………………………… 48
- Глава 3. Популяции насекомых…………………………………………................84
- Глава 4. Насекомые в экосистемах…………………………………………….140
- Глава 5. Экологическая эволюция насекомых………………………….170