Модели динамики численности
Моделирование процесса – это единственно возможный путь к его пониманию. В экологии насекомых часто разрабатываются словесные модели, более перспективно математическое моделирование, использующее не только качественную, но и количественную информацию о процессах.
Иногда применяют и другие способы моделирования (например, известный эксперимент Холлинга, в котором вслепую искали на столе диски из наждачной бумаги). В настоящем разделе мы остановимся только на некоторых основных принципах, используемых при разработке математических моделей динамики численности.
Известно три класса моделей, описывающих динамику численности популяций: 1) эмпирико–статистические; 2) элементарных экологических процессов (субмодели) и 3) жизненных систем популяции (имитационные модели).
Эмпирико–статистические модели основаны на статистическом анализе корреляций между реальной плотностью популяции изучаемого вида и различными факторами среды. Эти модели могут быть очень полезными для приблизительного прогноза численности. Влияние каждого фактора представляется обычно отдельными коэффициентами полинома – уравнения многофакторной регрессии типа
где Х–X– значения каждого из факторов,b–b– значения коэффициентов регрессии. Зависимости для каждого фактора могут быть не только линейными, но сколь угодно сложными. Очевидно, что сами коэффициенты регрессии обычно не имеют четкого биологического смысла, и в зависимости от ситуации, т.е. уровня факторов и их взаимодействий, могут меняться. В качестве факторов обычно выбирают плотность популяции предшествующего поколения и различные метеорологические показатели.
Некоторые модели элементарных экологических процессов, например, внутривидовой конкуренции, взаимодействия паразит–хозяин были рассмотрены нами в предыдущих разделах. Эти модели были направлены не на анализ конкретных данных, а на понимание сущности процесса. Как было также показано выше, они могут иметь и некоторую прагматическую ценность.
Модели жизненных схем популяций, совмещающие в себе несколько моделей элементарных процессов, оказываются наиболее ценными как для понимания процессов, протекающих в природе, так и для прогнозирования. Кроме того, эти модели могут быть основой для управления экологическими процессами.
Субмодели соединяются воедино соответственно формуле
где N– численность популяции в последующем поколении,N– численность предыдущего поколения,F– плодовитость,q – доля самок в предыдущем поколении,S-S–выживаемость особей по отношению к тому или иному фактору.
Помимо субмоделей в число этих показателей могут быть включены и коэффициенты, полученные методом статистической регрессии. Исходным материалом для таких моделей служат таблицы выживания, по возможности многолетние. Таблицы выживания необходимо составлять не только для изучаемого вида, но и для его паразитов и хищников, а также кормового растения.
Так как и вариации абиотических факторов, и биологические взаимодействия не могут быть полностью предсказаны, то желательно, чтобы и модель не была жестко детерминирована. Она должна включать в себя дополнительные элементы случайного характера и, соответственно, давать прогноз с той или иной степенью вероятности.
Вопросы моделирования экологических процессов более подробно изложены во многих монографиях, например книгах Ф.Н.Семевского и С.М.Семенова (1984), а также М.Д.Корзухина и Ф.Н.Семевского (1992).
Модели численности, построенные по этим принципам, имеют большое значение как для практики, так и для экологии в целом. Однако реальная ситуация, складывающаяся в биоценозе, всегда намного сложнее, чем ее отражение в модели. Дело не только в большом количестве факторов и их взаимодействий. Как правило, если судить по таблицам выживания, многие из них оказываются несущественными. Стремление охватить возможно большее количество факторов обычно приводит к неоправданному усложнению модели. Кроме того, согласно экологическому закону минимума влияние фактора оказывается тем сильнее, чем дальше его величина от оптимума. Соответственно, если учеты численности проводились в то время, когда фактор находился на оптимальном уровне, то его влияние останется незаметным и он будет исключен из анализа как несущественный. Однако достаточно относительно небольшого отклонения этого фактора от оптимума, чтобы исказить построенную нами картину явления. Такое несовершенство всех моделей сложных экологических явлений может проявиться как при изменениях во времени (например, от года к году), так и в пространстве (от одного биотопа к другому), поскольку и учеты численности, и составленные на их основе таблицы выживания опираются на результаты наблюдений за данной популяцией и в данное время. Поэтому модель справедлива лишь при изменениях всех факторов в пределах, которые имели место во время наблюдений.
При построении моделей возникают и другие сложности. Очевидно, что точность измерений (определения численности в природе) не очень велика, а объединение неточных данных еще больше увеличивает вероятность ошибки. Далее, плодовитость часто принимают за постоянную величину. На деле же абиотические факторы в их обычных пределах не столько вызывают смертность, сколько влияют на плодовитость. Кроме того, генетическая структура популяции может спонтанно меняться во времени, что должно отражаться как на плодовитости, так и на устойчивости насекомого по отношению к неблагоприятным факторам среды и заболеваниям.
Исключительно важно учитывать пространственную разнокачественность той местности, где проводятся наблюдения и миграции насекомых. Условия могут очень существенно варьировать даже в пределах одного биотопа. Напомним, что только температура в пределах одного растения может различаться в пределах 15 и более градусов. В разные годы могут оказаться наиболее пригодными для жизни насекомых данного вида то одни, то другие участки микрорельефа. Чем разнообразнее условия в пределах биотопа, чем больше шансов имеет популяция для выживания.
Миграции имеют очень большое значение в жизни насекомых, но еще недостаточно изучены. Дальние миграции относительно крупных насекомых по направленности и расстояниям могут быть сравнимы с перелетами птиц. Пассивные же миграции мелких насекомых вместе с токами воздуха фантастичны по масштабам вовлечения в них насекомых и также достигают по дальности сотен, а иногда и тысяч километров. Роль миграций обычно недооценивают, потому что очень трудно определить их количественные масштабы. Даже если это миграция на небольшие расстояния, она приводит не только к изменениям численности локальной популяции, но и к обмену генетической информацией и изменениям генетической структуры популяции.
Только в последнее время на основе современной компьютерной техники начали появляться модели, учитывающие жизнь популяции в пространстве. Такая модель была составлена для хлопковой совки Helicoverраarmigera(Hubner) и близкого к ней видаH.punctigeraWallengren. (M.L.Dillon, G.P.Fitt, 1991).O6a эти вида являются вредителями хлопчатника в Австралии.
Основным отличием этой модели является введенная в компьютер карта местности, разделенная на относительно небольшие ячейки, характеризующиеся своим растительным покровом и почвенно–климатическими условиями. В компьютер вводится отдельно для каждого такого участка информация о состоянии и фазе развития основного растения, о численности и развитии этих совок и метеорологические условия. В модель включены имитация развития яиц, гусениц и куколок, миграции имаго в зависимости от их физиологического состояния, температуры, направления и скорости ветра, а также откладки яиц в зависимости от привлекательности растений данного вида и на данной стадии их развития.
Модели динамики численности входят как важная часть в коммерческие модели развития агроценоза (P.M.Ives, A.B.Hearn, 1987). Такие модели объединяют как субмодели имитацию развития сельскохозяйственного растения и модели динамики численности наиболее важных вредителей. Помимо этих данных в компьютер регулярно вводится метерологическая информация. Модель дает информацию о прогнозируемом урожае, а также рекомендации о поливе полей и обработке их химическими средствами защиты растений (на основе порогов вредоносности). Нам неизвестны модели, которые давали бы рекомендации по сохранению полезных насекомых на поле или применению других биологических средств защиты растений.
- Предисловие
- Введение Предмет экологии насекомых
- Экология насекомых и современное человечество
- Насекомые полезные и вредные
- Насекомые – вершина эволюции животного мира
- Факторы, ограничивающие размеры насекомых
- Преимущества и недостатки мелких размеров
- Другие особенности насекомых, приведшие к их расцвету
- Глава 1. Абиотические факторы среды и насекомые
- 1. Основные положения аутэкологии насекомых
- Абиотические и биотические факторы среды
- Макро, мезо– и микроклимат
- Основные принципы воздействия абиотических факторов
- Реакции насекомых на неблагоприятные условия
- 2. Свет
- Общая характеристика фактора, его источники и измерение
- Воздействие света на насекомых
- Предпочитаемая освещенность
- Лет насекомых на искусственный свет
- Практическое использование лета насекомых на свет
- Роль ультрафиолетового излучения в жизни насекомых
- Роль инфракрасного излучения в жизни насекомых
- Роль света в пространственной ориентации насекомых
- 3. Температура Общая характеристика фактора.
- Измерения температуры и термостатирование.
- Влияние температуры на поведение насекомых
- Влияние на насекомых низких и высоких температур
- Влияние температуры на развитие насекомых.
- Влияние температуры на морфологию и окраску
- Термопреферендум
- 4. Влажность Общая характеристика фактора и его измерение
- Влияние влажности на насекомых
- 5. Осадки
- 6. Атмосферное давление
- 7. Ветер
- 8. Сила тяжести
- 9. Электрические факторы
- 10. Геомагнитное поле
- 11. Электромагнитные колебания
- 12. Геомагнитные бури
- Глава 2. Биологические ритмы
- 1. Основные понятия
- 2. Суточные ритмы Суточная периодичность среды и активность насекомых
- Методы изучения суточных ритмов
- Распределение активности во времени суток
- Сравнение ритмов разных видов подвижности и активности
- Вариации ритмов активности
- 3. Эндогенный суточный ритм Проявления эндогенного ритма в природе и лаборатории
- Экологическое значение эндогенного ритма
- Суточный ритм чувствительности организма насекомого
- Факторы среды – датчики времени
- Время потенциальной готовности
- Циркадианные ритмы
- 4. Сезонные ритмы Согласование жизнедеятельности насекомых с сезоном
- Сезонные миграции насекомых
- Сезонный покой
- Диапауза
- Индукция диапаузы внешними факторами
- Фотопериодическая реакция (фпр)
- Стадия развития, чувствительная к фотопериоду
- Фотопериодическая реакция и температура
- Географическая изменчивость фпр
- Реактивация
- Сезонные изменения чувствительности к фотопериоду
- Количественные и качественные фпг
- Другие проявления сезонности у насекомых
- Сезонные адаптации паразитов и общественных насекомых
- Сезонная периодичность–практические приложения
- 5. Лунные и приливные ритмы
- Глава 3. Популяции насекомых
- 1. Популяции в пределах ареала, их полиморфизм и генофонд Границы между популяциями, иерархия популяций
- Географическая популяция – аллопатрическая дивергенция
- Экологические расы – парапатрическая дивергенция
- Сезонные расы – симпатрическая дивергенция
- Биологические расы – симпатрическая дивергенция
- Полиморфизм в популяциях
- Основание культуры насекомых
- Изменения генофонда популяций
- Популяции насекомых при смене корма
- 2. Характер размещения насекомых на местности
- Равномерное размещение
- Случайное размещение
- Агрегированное размещение
- 3. Учет численности насекомых
- Простейшие методы учета численности
- Учет численности популяций с помощью проб
- Учет с фиксированным уровнем точности и метод обратного биномиального выбора
- Метод последовательного учета
- Метод корреляционных функций
- Методы учета относительной численности
- 4. Возрастная и половая структура популяции
- Возрастной состав популяции
- Таблицы выживания
- Половой состав популяции
- Партеногенез
- 5. Динамика численности популяций
- Биотический потенциал насекомых
- Роль абиотических факторов среды.
- Конкуренция между особями одного вида
- Конкуренция между видами
- Взаимодействия насекомого–фитофага и растения
- Эпизоотии
- Модифицирующее и регулирующее воздействие факторов.
- Фазовый портрет динамики численности
- Принцип ультрастабильности
- Типы динамики численности
- Модели динамики численности
- Управление популяциями
- Глава 4. Насекомые в экосистемах
- 1. Изучение видового состава
- 2. Биомасса и поток энергии
- 3. Экологические ниши и жизненные формы Экологические ниши
- Жизненные формы
- 4. Взаимосвязи в экосистемах
- Негативные и позитивные взаимодействия в популяциях.
- Потребности и взаимодействия в экосистемах
- 5. Сукцессии
- Конструктивные сукцессии
- Деструктивные сукцессии
- 6. Антропогенные экосистемы
- Агробиоценозы
- Насекомые города
- Культуры насекомых
- Мониторинг и антропогенные воздействия
- Охрана насекомых
- Глава 5. Экологическая эволюция насекомых
- 1. Предки насекомых и их местобитание
- 2. Местообитания древнейших насекомых на суше
- 3. Возникновение полета и экологическая дифференциация имаго и личинок
- 4.Эволюция питания насекомых
- 5. Коэволюция насекомых и растений
- Основная литература
- Оглавление
- Глава 1. Абиотические факторы среды и насекомые……………………..9
- Глава 2. Биологические ритмы…………………………………………………… 48
- Глава 3. Популяции насекомых…………………………………………................84
- Глава 4. Насекомые в экосистемах…………………………………………….140
- Глава 5. Экологическая эволюция насекомых………………………….170