Влияние на насекомых низких и высоких температур
Жизнь любого насекомого возможна только в определенном температурном интервале. Р.С.Ушатинская (1957) в этом отношении различает шесть следующих температурных зон:
1. Зона активной жизни лежит в среднем в пределах от 3 до 40°. Примерно в середине этой зоны – температуры, обеспечивающие минимальную смертность и максимальную плодовитость насекомых.
2 Нижняя зона переживания (зона холодового оцепенения). Здесь возможность выжить зависит от уровня температуры, продолжительности ее воздействия и, конечно, от вида насекомого.
3. Нижняя смертельная (летальная) зона, в которой происходит замерзание и кристаллизация жидкостей тела, а также повреждение кристаллами протоплазмы клеток. Эти необратимые изменения несколько различны у разных видов.
4. Зона витрификации, в которой жидкость, вместо того, чтобы образовывать кристаллы, становится витрифицированной, т.е. подобной стеклу. Витрификация возможна далеко не у всех насекомых. При этом происходит приостановка всех жизненных процессов, аналогичная анабиозу. В таком состоянии насекомое может вынести охлаждение почти до абсолютного нуля. Однако витрифицированная жидкость неустойчива и может постепенно кристаллизоваться.
5. Верхняя зона переживания (зона теплового шока). Так же как и в нижней зоне переживания продолжительность жизни насекомых зависит от уровня температуры и длительности ее воздействия.
6. Верхняя смертельная зона, в которой происходят необратимые явления: коагуляция белков и инактивация ферментов.
Влияние температуры на насекомое во многом зависит от его вида и образа жизни. Насекомые, обитающие в умеренной, а тем более в полярной зоне, наиболее устойчивы к низким температурам. Многие из этих насекомых легко переносят многократное замерзание и оттаивание. В умеренной зоне устойчивость насекомых к холоду закономерно изменяется в зависимости от сезона и наиболее высока в середине зимы, при этом наиболее устойчивыми оказываются насекомые, зимующие не под снежным покровом, а под корой деревьев и в пустых стеблях растений. Холодостойкость водных насекомых относительно мала в любое время года.
Если охлаждение не является очень глубоким и наступило внезапно, насекомое впадает в состояние холодового оцепенения. При повышении температуры такое насекомое быстро становится активным. В оцепеневшем состоянии насекомые могут без особого вреда для себя находиться от нескольких дней до недель. Временное охлаждение, задерживающее развитие и существенно удлиняющее жизнь насекомого, часто используется энтомологами в практической работе. Обычная температура холодильника (+2 – +4°) вполне достаточна для хранения насекомых. Следует помнить, что насекомые при таком хранении погибают не столько от холода, сколько от высушивания. Поэтому рекомендуется садок с насекомыми помещать в полиэтиленовый плотно закрытый пакет с куском ваты, смоченной водой.
В природе холода наступают в определенное время года, и перед наступлением неблагоприятного сезона в организме насекомого происходят иногда очень глубокие физиологические перестройки. Они связаны с определенным физиологическим состоянием – диапаузой.
Что происходит с насекомыми при дальнейшем понижении температуры? Появление ледяных кристаллов в клетках тканей насекомого, по–видимому, для него всегда смертельно. Тем не менее ряд насекомых способен переносить морозы в течение длительного времени. Таких насекомых можно разделить на две категории (M.J.Tauber et al., 1986): устойчивые к замерзанию (после замерзания внеклеточной жидкости они остаются живыми) и неустойчивые (гибнущие после замерзания, но имеющие специальные приспособления, чтобы ему противостоять). По–видимому, в редких случаях возможно и сочетание устойчивости к замерзанию с механизмами, препятствующими замерзанию. Явление витрификации, если и встречается, бывает сравнительно редко, и само это состояние воды достаточно неустойчиво.
Устойчивость к замерзанию не встречается среди филогенетически низших групп насекомых, а также среди многоножек, скорпионов и пауков. Такую устойчивость выработали лишь некоторые двукрылые, бабочки, жуки и сетчатокрылые, и то лишь на определенной стадии развития. У этих насекомых жидкости тела замерзают при относительно высокой для насекомых температуре – не ниже –10°С. Особенностью этих насекомых является наличие в гемолимфе особых белковоподобных веществ, способствующих образованию кристаллов льда между органами. Эти кристаллы притягивают к себе молекулы воды, оставшиеся свободными. По–видимому, при этом резко снижается возможность кристаллизации воды внутри клеток. К числу таких устойчивых к замерзанию насекомых можно отнести, например, бабочку–махаона, куколка которого в замороженном состоянии способна переносить температуру до –196° С.
Гораздо более распространена среди насекомых способность противостоять замерзанию. Такие насекомые вырабатывают специальные приспособления, суть действия которых сводится к снижению точки переохлаждения, а также к максимальному удалению веществ, способствующих образованию кристаллов льда по крайней мере внутри клеток. Для таких насекомых при их обитании в умеренной зоне точка переохлаждения, ниже которой возможно замерзание, лежит ниже –30° С, а для насекомых арктической зоны – ниже –60° С.
Каковы реальные возможности повышения холодостойкости у насекомых?
Во-первых, это уменьшение общего количества воды в теле и связывание ее коллоидами. О значении воды для холодостойкости свидетельствует такой факт. Зимующие гусеницы златогузки содержат в теле до 69% воды и выдерживают температуру –14° до 158 дней. Активные же гусеницы в летнее время содержат более 80% воды и могут переносить ту же низкую температуру не более 1,5 –4 ч.
Во-вторых, это увеличение содержания жира. Так, у тех же зимующих гусениц златогузки содержание жира доходит до 6%, в то время как летом оно примерно 4%.
В-третьих, это увеличение количества резервных углеводов, особенно гликогена, являющегося гидрофильным коллоидом.
В-четвертых, это повышение концентрации различных веществ, растворенных в жидкостях тела. Известно, что 1 моль любого вещества на 1 литр раствора понижает температуру замерзания последнего почти на 2° Эффект от нескольких веществ, находящихся в жидкости, суммируется.
Среди таких веществ можно назвать некоторые сахара (трегалоза, глюкоза, фруктоза), специальные белки и аминокислоты. Кроме того, в теле зимующих насекомых нередко в большом количестве (до 25% от массы тела) присутствует широко используемый в технике антифриз – глицерин или аналогичные ему по действию вещества. Глицерин здесь обычно не является только пассивным антифризом и определенным образом распределяется в теле насекомого. Во всяком случае, искусственная инъекция глицерина не всегда приводит к повышению холодоустойчивости. После окончания зимовки глицерин превращается в гликоген.
Необходимость удаления из тела веществ, способствующих появлению кристаллов, приводит иногда к определенным изменениям пищевой диеты. У насекомого, полностью готового к зимовке, кишечник освобождается от содержимого.
Рекорд холодостойкости поставили личинки одного из видов комаров–дергунов, обитающие в горных районах Африки. Эти личинки развиваются во временных водоемах – углублениях скал, заполняемых водой во время дождей. Все эти водоемы вместе с личинками быстро высыхают, но личинки в сухом виде остаются живыми и после увлажнения опять приходят в активное состояние. Личинки в сухом виде без какого–либо ущерба выдерживают температуру почти абсолютного нуля (–270°).
Гораздо сложнее для насекомых противостоять высоким температурам, которые быстро приводят к нарушениям метаболизма, коагуляции белков и гибели. Какое–то время насекомые способны поддерживать температуру тела ниже температуры окружающего воздуха за счет испарения влаги, которое усиливается в результате разрушения высокой температурой воскоподобной оболочки тела. Естественно, что этот эффект определяется влажностью воздуха. Так, черные тараканы во влажном воздухе быстро погибают при +38°, а в сухом, обеспечивающем испарение, выживают какое–то время и при +48°. В некоторых случаях температура тела может быть понижена размазыванием по телу капель жидкости, выделяемых из ротового или анального отверстий (С.В.Томс, 1981).
Результатом специальных физиологических приспособлений является способность некоторых насекомых жить в горячих вулканических источниках при температуре воды до +65°. Таковы личинки некоторых мух–прибрежниц и львинок. Полной им противоположностью являются насекомые, активные на снегу в зимнее время. Для них губительна комнатная температура (+20°). Сходным образом температура +35° за минуты убивает обитающих в пещере при постоянной температуре +11° кузнечиков.
- Предисловие
- Введение Предмет экологии насекомых
- Экология насекомых и современное человечество
- Насекомые полезные и вредные
- Насекомые – вершина эволюции животного мира
- Факторы, ограничивающие размеры насекомых
- Преимущества и недостатки мелких размеров
- Другие особенности насекомых, приведшие к их расцвету
- Глава 1. Абиотические факторы среды и насекомые
- 1. Основные положения аутэкологии насекомых
- Абиотические и биотические факторы среды
- Макро, мезо– и микроклимат
- Основные принципы воздействия абиотических факторов
- Реакции насекомых на неблагоприятные условия
- 2. Свет
- Общая характеристика фактора, его источники и измерение
- Воздействие света на насекомых
- Предпочитаемая освещенность
- Лет насекомых на искусственный свет
- Практическое использование лета насекомых на свет
- Роль ультрафиолетового излучения в жизни насекомых
- Роль инфракрасного излучения в жизни насекомых
- Роль света в пространственной ориентации насекомых
- 3. Температура Общая характеристика фактора.
- Измерения температуры и термостатирование.
- Влияние температуры на поведение насекомых
- Влияние на насекомых низких и высоких температур
- Влияние температуры на развитие насекомых.
- Влияние температуры на морфологию и окраску
- Термопреферендум
- 4. Влажность Общая характеристика фактора и его измерение
- Влияние влажности на насекомых
- 5. Осадки
- 6. Атмосферное давление
- 7. Ветер
- 8. Сила тяжести
- 9. Электрические факторы
- 10. Геомагнитное поле
- 11. Электромагнитные колебания
- 12. Геомагнитные бури
- Глава 2. Биологические ритмы
- 1. Основные понятия
- 2. Суточные ритмы Суточная периодичность среды и активность насекомых
- Методы изучения суточных ритмов
- Распределение активности во времени суток
- Сравнение ритмов разных видов подвижности и активности
- Вариации ритмов активности
- 3. Эндогенный суточный ритм Проявления эндогенного ритма в природе и лаборатории
- Экологическое значение эндогенного ритма
- Суточный ритм чувствительности организма насекомого
- Факторы среды – датчики времени
- Время потенциальной готовности
- Циркадианные ритмы
- 4. Сезонные ритмы Согласование жизнедеятельности насекомых с сезоном
- Сезонные миграции насекомых
- Сезонный покой
- Диапауза
- Индукция диапаузы внешними факторами
- Фотопериодическая реакция (фпр)
- Стадия развития, чувствительная к фотопериоду
- Фотопериодическая реакция и температура
- Географическая изменчивость фпр
- Реактивация
- Сезонные изменения чувствительности к фотопериоду
- Количественные и качественные фпг
- Другие проявления сезонности у насекомых
- Сезонные адаптации паразитов и общественных насекомых
- Сезонная периодичность–практические приложения
- 5. Лунные и приливные ритмы
- Глава 3. Популяции насекомых
- 1. Популяции в пределах ареала, их полиморфизм и генофонд Границы между популяциями, иерархия популяций
- Географическая популяция – аллопатрическая дивергенция
- Экологические расы – парапатрическая дивергенция
- Сезонные расы – симпатрическая дивергенция
- Биологические расы – симпатрическая дивергенция
- Полиморфизм в популяциях
- Основание культуры насекомых
- Изменения генофонда популяций
- Популяции насекомых при смене корма
- 2. Характер размещения насекомых на местности
- Равномерное размещение
- Случайное размещение
- Агрегированное размещение
- 3. Учет численности насекомых
- Простейшие методы учета численности
- Учет численности популяций с помощью проб
- Учет с фиксированным уровнем точности и метод обратного биномиального выбора
- Метод последовательного учета
- Метод корреляционных функций
- Методы учета относительной численности
- 4. Возрастная и половая структура популяции
- Возрастной состав популяции
- Таблицы выживания
- Половой состав популяции
- Партеногенез
- 5. Динамика численности популяций
- Биотический потенциал насекомых
- Роль абиотических факторов среды.
- Конкуренция между особями одного вида
- Конкуренция между видами
- Взаимодействия насекомого–фитофага и растения
- Эпизоотии
- Модифицирующее и регулирующее воздействие факторов.
- Фазовый портрет динамики численности
- Принцип ультрастабильности
- Типы динамики численности
- Модели динамики численности
- Управление популяциями
- Глава 4. Насекомые в экосистемах
- 1. Изучение видового состава
- 2. Биомасса и поток энергии
- 3. Экологические ниши и жизненные формы Экологические ниши
- Жизненные формы
- 4. Взаимосвязи в экосистемах
- Негативные и позитивные взаимодействия в популяциях.
- Потребности и взаимодействия в экосистемах
- 5. Сукцессии
- Конструктивные сукцессии
- Деструктивные сукцессии
- 6. Антропогенные экосистемы
- Агробиоценозы
- Насекомые города
- Культуры насекомых
- Мониторинг и антропогенные воздействия
- Охрана насекомых
- Глава 5. Экологическая эволюция насекомых
- 1. Предки насекомых и их местобитание
- 2. Местообитания древнейших насекомых на суше
- 3. Возникновение полета и экологическая дифференциация имаго и личинок
- 4.Эволюция питания насекомых
- 5. Коэволюция насекомых и растений
- Основная литература
- Оглавление
- Глава 1. Абиотические факторы среды и насекомые……………………..9
- Глава 2. Биологические ритмы…………………………………………………… 48
- Глава 3. Популяции насекомых…………………………………………................84
- Глава 4. Насекомые в экосистемах…………………………………………….140
- Глава 5. Экологическая эволюция насекомых………………………….170