Учет с фиксированным уровнем точности и метод обратного биномиального выбора
Проведение учетов численности насекомых – очень важная в практическом отношении, но, как правило, исключительно трудоемкая работа. Как мы уже отмечали, если нужно определить уровень плотности с заданной степенью точности, следует собрать и обработать определенное количество проб. Однако можно не подсчитывать заранее необходимое количество проб, но проводить учеты последовательно, пока полученные результаты не достигнут определенной степени точности. Для такого учета с фиксированным уровнем точности надо на основе предварительных исследовании вычислить так называемую "стоп-линию"и нанести ее на график, где ось ординат – сумма всех последовательно взятых определений плотности (рис.24). Очевидно, что результаты этих последовательных определений будут соответствовать восходящей кривой. Когда эта кривая пересекает "стоп-линию", достигается фиксированный уровень точности.
Рис.24. График последовательного учета численности насекомых с фиксированным уровнем точности. Ось абсцисс – число последовательно берущихся проб, ось ординат – суммарное число всех учтенных насекомых n – число реально выполненных учетов, Q – число обнаруженных во время этих учетов насекомых, n – число 1 учетов, необходимое для определения численности с заданной точностью, М– ожидаемое число обнаруженных насекомых в n пробах (по А.И.Воронцову и др., 1983)
Очевидно, что после проведения некоторого количества учетов мы можем нанести эти данные на график и, наметив примерный ход линии графика, определить общее количество проб, необходимое для данной степени точности учета. На рис. 24 показано, что в результате nчисла проб собрано всего Q насекомых. Продолжая диагональ прямоугольника, доводим ее до пересечения со "стоп-линией". Перпендикуляр, опущенный из точки пересеченияMна ось абсцисс, покажет, что необходимо взятьпроб.
Метод обратного биномиального выбора основан на том, что процент проб, содержащих данных насекомых (встречаемость), отражает их реальное количество в природе. Это справедливо, конечно, только при постоянном размере пробы. Расчет основан на формуле отрицательного биномиального распределения. На графике (Рис.25) показано соотношение между долей заселенных деревьев и средним количеством кладок на дерево и доверительные интервалы для двух уровней численности. Такой метод не требует реального подсчета насекомых, и учет на каждом дереве прекращается сразу же после обнаружения хотя бы одной особи. Следовательно, значительно сокращается трудоемкость учета. Этот метод оказывается очень перспективным и в сельскохозяйственной практике.
Рис.25. Линии отрицательного биномиального выборам 90%–ного доверительного интервала при обследовании 50 или 100 деревьев (растений). Ось абсцисс – доля заселенных деревьев, ось ординат – среднее число кладок на одно дерево (по А.И. Воронцову и др., 1983)
- Предисловие
- Введение Предмет экологии насекомых
- Экология насекомых и современное человечество
- Насекомые полезные и вредные
- Насекомые – вершина эволюции животного мира
- Факторы, ограничивающие размеры насекомых
- Преимущества и недостатки мелких размеров
- Другие особенности насекомых, приведшие к их расцвету
- Глава 1. Абиотические факторы среды и насекомые
- 1. Основные положения аутэкологии насекомых
- Абиотические и биотические факторы среды
- Макро, мезо– и микроклимат
- Основные принципы воздействия абиотических факторов
- Реакции насекомых на неблагоприятные условия
- 2. Свет
- Общая характеристика фактора, его источники и измерение
- Воздействие света на насекомых
- Предпочитаемая освещенность
- Лет насекомых на искусственный свет
- Практическое использование лета насекомых на свет
- Роль ультрафиолетового излучения в жизни насекомых
- Роль инфракрасного излучения в жизни насекомых
- Роль света в пространственной ориентации насекомых
- 3. Температура Общая характеристика фактора.
- Измерения температуры и термостатирование.
- Влияние температуры на поведение насекомых
- Влияние на насекомых низких и высоких температур
- Влияние температуры на развитие насекомых.
- Влияние температуры на морфологию и окраску
- Термопреферендум
- 4. Влажность Общая характеристика фактора и его измерение
- Влияние влажности на насекомых
- 5. Осадки
- 6. Атмосферное давление
- 7. Ветер
- 8. Сила тяжести
- 9. Электрические факторы
- 10. Геомагнитное поле
- 11. Электромагнитные колебания
- 12. Геомагнитные бури
- Глава 2. Биологические ритмы
- 1. Основные понятия
- 2. Суточные ритмы Суточная периодичность среды и активность насекомых
- Методы изучения суточных ритмов
- Распределение активности во времени суток
- Сравнение ритмов разных видов подвижности и активности
- Вариации ритмов активности
- 3. Эндогенный суточный ритм Проявления эндогенного ритма в природе и лаборатории
- Экологическое значение эндогенного ритма
- Суточный ритм чувствительности организма насекомого
- Факторы среды – датчики времени
- Время потенциальной готовности
- Циркадианные ритмы
- 4. Сезонные ритмы Согласование жизнедеятельности насекомых с сезоном
- Сезонные миграции насекомых
- Сезонный покой
- Диапауза
- Индукция диапаузы внешними факторами
- Фотопериодическая реакция (фпр)
- Стадия развития, чувствительная к фотопериоду
- Фотопериодическая реакция и температура
- Географическая изменчивость фпр
- Реактивация
- Сезонные изменения чувствительности к фотопериоду
- Количественные и качественные фпг
- Другие проявления сезонности у насекомых
- Сезонные адаптации паразитов и общественных насекомых
- Сезонная периодичность–практические приложения
- 5. Лунные и приливные ритмы
- Глава 3. Популяции насекомых
- 1. Популяции в пределах ареала, их полиморфизм и генофонд Границы между популяциями, иерархия популяций
- Географическая популяция – аллопатрическая дивергенция
- Экологические расы – парапатрическая дивергенция
- Сезонные расы – симпатрическая дивергенция
- Биологические расы – симпатрическая дивергенция
- Полиморфизм в популяциях
- Основание культуры насекомых
- Изменения генофонда популяций
- Популяции насекомых при смене корма
- 2. Характер размещения насекомых на местности
- Равномерное размещение
- Случайное размещение
- Агрегированное размещение
- 3. Учет численности насекомых
- Простейшие методы учета численности
- Учет численности популяций с помощью проб
- Учет с фиксированным уровнем точности и метод обратного биномиального выбора
- Метод последовательного учета
- Метод корреляционных функций
- Методы учета относительной численности
- 4. Возрастная и половая структура популяции
- Возрастной состав популяции
- Таблицы выживания
- Половой состав популяции
- Партеногенез
- 5. Динамика численности популяций
- Биотический потенциал насекомых
- Роль абиотических факторов среды.
- Конкуренция между особями одного вида
- Конкуренция между видами
- Взаимодействия насекомого–фитофага и растения
- Эпизоотии
- Модифицирующее и регулирующее воздействие факторов.
- Фазовый портрет динамики численности
- Принцип ультрастабильности
- Типы динамики численности
- Модели динамики численности
- Управление популяциями
- Глава 4. Насекомые в экосистемах
- 1. Изучение видового состава
- 2. Биомасса и поток энергии
- 3. Экологические ниши и жизненные формы Экологические ниши
- Жизненные формы
- 4. Взаимосвязи в экосистемах
- Негативные и позитивные взаимодействия в популяциях.
- Потребности и взаимодействия в экосистемах
- 5. Сукцессии
- Конструктивные сукцессии
- Деструктивные сукцессии
- 6. Антропогенные экосистемы
- Агробиоценозы
- Насекомые города
- Культуры насекомых
- Мониторинг и антропогенные воздействия
- Охрана насекомых
- Глава 5. Экологическая эволюция насекомых
- 1. Предки насекомых и их местобитание
- 2. Местообитания древнейших насекомых на суше
- 3. Возникновение полета и экологическая дифференциация имаго и личинок
- 4.Эволюция питания насекомых
- 5. Коэволюция насекомых и растений
- Основная литература
- Оглавление
- Глава 1. Абиотические факторы среды и насекомые……………………..9
- Глава 2. Биологические ритмы…………………………………………………… 48
- Глава 3. Популяции насекомых…………………………………………................84
- Глава 4. Насекомые в экосистемах…………………………………………….140
- Глава 5. Экологическая эволюция насекомых………………………….170