6.6 Применение биотехнологии в энергетике
Биоэнергетика - это область биотехнологии связанная с эффек- тивным использованием энергии, запасенной при фотосинтезе био- массой.
В последние годы, часто говорят об "энергетическом кризисе"-
запасы ископаемого топлива ограничены, а население планеты растет,
и потребление энергии все увеличивается.
Известно, что около 99,4%, доступной нам не ядерной энергии мы получаем от Солнца, и часть ее аккумулируется в биомассе, хотя и
с малой эффективностью. Усредненная максимальная эффективность превращения энергии при фотосинтезе составляет от 5% до 6%. В зо-
нах с умеренным климатом эффективность преобразования энергии
составляет от 0,5% до 1,3%. Растения используют свет с длиной волны от 400 до 700 нм, то есть доля фотосинтетически активной радиации
(ФАР) составляет 50% всего солнечного света.
Основные процессы фотосинтеза протекают в хлоропластах, ко-
торые поглощают СО2, поступающий в растение путем диффузии.
Фотосинтез состоит из двух этапов:
- преобразование энергии фотонов в химическую энергию, кото- рая накапливается в форме АТФ и комплекса водорода связанного с коферментом НАДФ;
Фотолиз - образование углеводов из СО2 с участием Н2 и АТФ
12 Н2О свет 12 [Н2] + 6 О2 + АТФ
Фотоассимилиция
6 СО2 + 12 [Н2] темнота, АТФ С6Н12О6 + 6 Н2О
110
Преимущество использования солнечной энергии, заключенной в биомассе, в том, что она запасается в форме органических веществ и поэтому ее можно хранить и перемещать во времени и в пространстве. Биомассу можно сжигать или довольно простыми способами при помощи микроорганизмов превращать в жидкое или газообразное топ- ливо (метан, этиловый спирт или водород). По этой причине биомасса
представляет собой постоянно возобновляемый источник энергии.
Сырье, используемое для производства биотоплива: древесина,
масленичные растения, водоросли.
Ранее основным путем использования растительного сырья в ка- честве топлива во всем мире было прямое сжигание. В настоящее вре- мя - это система термической модификации такого сырья: пиролиз, га- зификация и гидрогенизация.
При всем разнообразии жизненных функций, связанных с потреб-
лением энергии, в их основе лежат три вида трансформации энергии:
энергия АТФ – энергия химических связей стабильных био-
логических соединений;
энергия АТФ – механическая работа;
энергия АТФ – осмотическая работа.
Первый вид использования энергии АТФ составляет основу син- тезов разнообразных химических соединений, в том числе и биопо- лимеров – нуклеиновых кислот, белков и полисахаридов (анаболиче-
ская ветвь метаболизма). Их энергообеспечение достигается сопряже-
нием реакций, протекающих на одном ферменте («энергия из рук в руки»). При этом запасы энергии в одном из участков реакции повы- шаются за счёт распада макроэргических соединений с понижением запасов энергии системы в целом.
Второй вид - использование энергии АТФ для осуществления механической работы. Этот процесс лежит в основе разнообразных форм двигательной активности организмов и клеток: сокращение
мышц у животных, движение листьев и цветков у растений, работы
жгутиков и ресничек у простейших, перемещения ядерного аппарата при делении клеток и т.п. Коэффициент полезного действия трансфор- мации энергии в мышце составляет около 40%. Решающую роль в та- ких механо-химических процессах играют сократительные белки, спо- собные перестраивать свою структуру и взаиморасположение, что на- ходит свое внешнее проявление в макроскопическом эффекте – сокра- щении мышцы.
Третий вид использования энергии АТФ – осмотическая рабо-
та. В ее основе лежит генерация и поддержание концентрационных
111
перепадов (градиентов) различных веществ, и, прежде всего, ионов на- трия и калия в системах: клетка – окружающая среда или клеточные органоиды – цитоплазма. Перенос веществ, связанный с расходом бо- гатых энергией соединений, получил название активного транспорта. Благодаря активному транспорту в клетках поддерживается необходи- мое постоянство ионного состава и ионная поляризация мембран воз- будимых (нервные, мышечные) клеток – мембранный потенциал, или потенциал покоя. Это является основной предпосылкой для возникно- вения и распространения нервного импульса – потенциала действия.
Наконец, энергия АТФ может с высокой эффективностью трансформироваться в световую энергию. Это имеет место в явле- нии биолюминесценции. Значительно меньшую роль в биоэнергетике играют процессы чисто физического переноса энергии. Наибольшее функциональное значение миграция энергии имеет в процессе фото- синтеза: с ее помощью осуществляется перенос энергии квантов света, поглощенных различными пигментами, к реакционным центрам, с по- мощью которых энергия электронного возбуждения трансформируется
в химическую энергию продуктов фотосинтеза.
- О. Ю. Сартакова
- Учебное пособие
- Содержание
- 1 Основы микробиологии ................................................... 7
- 2 Основы биотехнологии ................................................... 42
- 3 Типовая схема и основные стадии
- 4 Основные понятия биокатализа и53
- 5 Ферментация....................................................................... 65
- 6 Области применения биотехнологии........................... 69
- Введение
- 1 Основы микробиологии
- 1.1 Общие сведения о микроорганизмах
- 1.2 Распространение микроорганизмов в природе
- 1.3 Морфологическая характеристика отдельных групп микроорганизмов
- 1.3.1 Структура эукариотической клетки
- Ской мембраны
- 1.3.2 Структура прокариотической клетки
- 1.3.3 Ультрамикробы
- 1.3.4 Бактерии
- 1.3.4.1 Спорообразование у бактерий
- 1.3.4.2 Движение бактерий
- 1.3.4.3 Размножение бактерий
- 1.3.4.4 Питание бактерий
- 1.3.4.5 Типы питания
- 1.3.4.6 Систематика бактерий
- 1.3.5 Актиномицеты
- 1.3.6 Грибы
- 1.3.7 Водоросли
- 1.3.8 Простейшие
- 1.3.9 Коловратки
- 2 Основы биотехнологии
- 2.1 Объекты биотехнологии
- 2.2 Прошлое и настоящее биотехнологии
- 2.3 Перспективы развития биотехнологии
- 2.4 Основные виды биотехнологической деятельности микроорганизмов
- 2.5 Преимущества биотехнологических процессов
- 3 Типовая схема и основные стадии биотехнологических производств
- 4 Основные понятия биокатализа и биотрансформации
- 4.1 Основные группы биотрансформаций
- 4.2 Основные виды реакций биокатализа
- 4.3 Классификация ферментов
- 4.4 Преимущества и недостатки биокаталитических процессов
- 4.5 Основные понятия иммобилизации ферментов
- 4.6 Методы иммобилизации ферментов
- Го связывания с носителем
- «Сшивки»
- 4.7 Оценка качества иммобилизованных ферментов и метода иммобилизации
- 4.8 Примеры использования ферментов
- 5 Ферментация
- 5.1 Классификация процессов ферментации
- Ферментация бывает:
- 5.2 Основные параметры периодической ферментации
- 5.3 Понятие скорости роста
- 5.4 Фазы периодической ферментации
- 5.5 Преимущества и недостатки периодической ферментации
- 6 Области применения биотехнологии
- 6.1 Биотехнологические процессы в решении экологических задач
- 6.2 Примеры блок-схем микробиологической очистки стоков
- 6.3 Биохимические методы очистки воды
- 6.3.1 Микробная ассоциация и технологические условия ме-
- 6.3.2 Очистка воды в аэротенках
- 6.3.3 Очистка воды в биофильтрах
- 6.3.4 Комбинированные сооружения аэробной биохимической очистки воды
- 6.3.5 Процессы нитрификации и денитрификации
- 6.3.6 Методы обработки осадка
- 6.3.7 Аэробная стабилизация осадка
- 6.3.8 Метановое брожение (биометаногенез)
- 6.3.8.1 Этапы метанового брожения
- Биогаз (сн4, co2 )
- 6.3.8.2 Химизм процесса метанового брожения
- 6.3.8.3 Микробная ассоциация биометаногенеза
- 6.3.8.4 Сырье биометаногенеза
- 6.3.8.5 Технологические режимы и аппаратурное оформление процесса метанового брожения
- 6.4 Биоценозы как индикаторы сапробности водоемов
- 6.5 Применение биотехнологии в медицине
- 6.5.1Антибиотики
- 6.5.2. Гормоны
- 6.5.3 Вакцины, иммунные сыворотки и иммуноглобулины
- 6.5.4 Ферменты
- 6.5.5 Биодатчики в медицине
- 6.6 Применение биотехнологии в энергетике
- 6.6.1 Законы биоэнергетики
- 6.6.2 Биологические мембраны, как преобразователи энергии
- 6.6.3 Характеристика растительного сырья как источника энергии
- 6.6.4 Альтернативные источники энергии и их получение
- 6.7 Производство пищевых продуктов и напитков
- 6.7.1 Биотехнологические процессы в хлебопекарном производстве
- 6.7.2 Биотехнология приготовления пива
- 6.7.3 Производство вина и спиртсодержащих продуктов
- 6.7.4 Биотехнология приготовления кисломолочных продуктов и сметаны
- 6.7.5 Биотехнологические процессы в сыроделии
- 6.7.6 Биотехнология приготовления маргарина
- 6.8 Химическая промышленность и биотехнология
- 6.9 Сельское хозяйство и биотехнология
- 6.10 Биогеотехнология
- 6.10.1Биогидрометаллургия
- 6.10.2 Выщелачивание куч и отвалов
- 6.10.3 Бактериальное выщелачивание in situ
- 6.10.4 Выщелачивание минеральных концентратов
- 6.10.5 Микробиологический способ извлечения золота
- 6.10.6 Биосорбция металлов из растворов
- 6.10.7 Обогащение руд
- 6.10.8 Извлечение нефти
- 6.11 Безопасность биотехнологических процессов
- Глава 1
- Главы 2, 3
- Глава 4
- Глава 5
- Глава 6