Волновая оптика
Оптика - это учение о свете. По современным представлениям свет - сложное явление, в котором сочетаются такие, казалось бы, взаимоисключающие свойства, как волновые (непрерывные), так и корпускулярные (квантовые). Корпускулярная теория света была предложена в 17 веке И. Ньютоном.
Почти одновременно с корпускулярной теорией света (1678- 1690 г.) голландский физик Гюйгенс опубликовал "Трактат о свете", в котором сформулировал основные положения волновой теории света.
В своем труде Гюйгенс дал принципы распространения волнового процесса в пространстве.
Каждая точка среды, до которой дошло световое возбуждение, сама становится источником вторичных световых волн, огибающая к которым в каждый данный момент времени является фронтом распространения световых волн. Под фронтом волны понимается геометрическое место точек, до которых дошло световое возбуждение в данный момент времени.
Позднее Френель дополнил принцип Гюйгенса:
Вторичные световые волны, интерферируя между собой, взаимно гасятся во всех направлениях, кроме первоначального направления распространения волны.
Эти два положения получили название принципа Гюйгенса - Френеля. Этим объясняется прямолинейность распространения света. Свет от точечного источника распространяется в виде сферической волны. Если источник света находится на достаточно большом расстоянии, то фронт волны можно считать плоским, это предельный случай сферической волны. Волновая природа света подтверждается такими явлениями, как интерференция, дифракция и поляризация. Теория интерференции была разработана Френелем.
Интерференция света — это явление перераспределения энергии световых волн в пространстве, при наложении двух или более волновых процессов, имеющих одинаковую частоту и постоянную во времени разность фаз.
Источники света, имеющие одинаковую частоту и постоянную во времени разность фаз, называются когерентными. Пусть имеются два когерентных источника света, в которых колебания совершаются по закону s = A sin ωt.
В точке С колебания, распространяющиеся от источника S1, будут совершаться по закону:
s1 = A sin (ω t - 2πx1/λ),
а от источника S2 по закону:
s2 = A sin (ωt -2πx2/λ).
Так как волны приходят в точку С одновременно, результирующее смещение будет в любой момент определяться суммой составляющих смещений: S = S1 + S2 S = A sin (ωt - 2πx1/λ ) + A sin (ωt -2πx2/λ ). Применяя формулу суммы синусов, получим:
S = 2 A cos[ π(х2 — х1) /λ] sin[ωt — π (х2+ х1)/ λ ].
В этом уравнении выражение х2 – х1 = ∆ х называют геометрической разностью хода волн - это разность расстояний, которые проходят волны до встречи в точке С. Выражение 2Acos (π∆х/λ) = А' является амплитудой результирующего колебания. Подставляя различные значения Ах в формулу А', были выявлены следующие закономерности: Если геометрическая разность хода волн равна четному числу полудлин волн, то амплитуда результирующего колебания будет наибольшей - в данной точке усиление колебаний.
∆x = (2kλ)/2
Если геометрическая разность хода волн равна нечетному числу полудлин волн, то амплитуда результирующих колебаний будет минимальной - ослабление колебаний.
∆x = (2k+1)λ/2
В формулах k - натуральный ряд чисел 0,1,2,3...
При когерентных источниках волн пространство, окружающее источники, будет представляться в виде совокупности максимумов и минимумов. Такое расположение называется устойчивой интерференционной картиной. Поскольку свет представляет собой электромагнитные волны, должна наблюдаться интерференция света. Однако в результате того, что отдельные световые импульсы, посылаемые высвечивающимися атомами источника света, не согласованы между собой по фазе, а кроме того, могут отличаться по частоте, картина взаимного усиления, возникающая в каком-либо участке пространства, уже через доли секунды сменяется картиной взаимного ослабления и наоборот. Хаотическая смена таких мгновенных картин глазом не воспринимается, а создает ощущение ровного потока света, не изменяющегося во времени.
Для наблюдения устойчивой во времени интерференционной картины необходимы условия, при которых частоты и разности фаз интерферирующих лучей были бы постоянными в течение всего времени наблюдения. В природе не существует когерентных источников света. Для того чтобы два светящихся тела являлись когерентными источниками, волны, излучаемые всеми частицами первого тела, должны отличаться по фазе от волн, излучаемых всеми частицами второго тела, все время на одну и туже величину. Такое событие практически совершенно невероятно. Поэтому, для получения когерентных источников прибегают к искусственному приему: "раздваивают" свет, исходящий от одного источника (зеркала или бипризма Френеля, зеркало Лойда, билинза Билле и др.). Пожалуй, единственным макроисточником света, в котором частота и фазы колебаний со временем не меняются, является лазер.
В естественных условиях образование когерентных волн и явление интерференции можно наблюдать при попадании света на тонкую прозрачную пластинку или пленку. Пучок света попадает на тонкую пластинку. Луч 1 из этого пучка попадает на точку А, частично отражается (луч 2), частично преломляется (луч АВ). Преломленный луч испытывает отражение на нижней границе пластинки в точке В. Отраженный луч, преломившись в точке С, выходит в первую среду (луч 3). Лучи 2 и 3 образованны от одного луча, поэтому они когерентны и будут интерферировать, создавая устойчивую интерференционную картину.
При освещении этой пластинки или пленки белым светом возникает весьма причудливая по форме и расцветке интерференционная картина. Такую картину дают мыльные пленки, нефтяные и масляные пятна на поверхности воды, крылья мелких насекомых, жировые налеты на стекле и другие тонкие пленки толщиной порядка 10-4см. Это интерференционное явление широко используется в оптической промышленности для так называемого просветления оптики. Дело в том, что в сложных оптических системах (фотообъективах и т.п.) значительная часть световой энергии отражается от поверхности линз. Это заметно снижает яркость и контрастность изображения и создает блики. Если на поверхность линз нанести прозрачную пленку толщиной "к/4п, изготовленную из вещества с показателем преломления п, немного меньшим показателя стекла линз, то такая пленка не будет отражать света; благодаря этому качество изображения заметно улучшится (оптика просветлеет). Кроме того, интерференцию света используют в специальных приборах — интерферометрах — для измерения с высокой степенью точности длин волн, небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей.
Дифракция — явление отклонения света от прямолинейного распространения и захождение в область геометрической тени.
В результате происходит сложение волн и образование минимумов и максимумов, так же как и при интерференции. Для наблюдения явления дифракции необходимо, чтобы размеры препятствия или размеры отверстия или щели были соизмеримы с длиной световой волны. Явление дифракции можно объяснить, используя принцип Гюйгенса — Френеля. Пусть на щель, размеры которой соизмеримы с длиной световой волны, падают световые волны. Каждая точка щели становится новым источником вторичных волн. Краевые точки щели, являясь источниками вторичных световых волн, дают возможность распространяться свету в направлении, отличном от первоначального.
Вторичные волны, интерферируя, образуют на экране дифракционные максимумы и минимумы.
От одной щели свет дает дифракционную картину малой интенсивности, поэтому используют одномоментно несколько отверстий, т.е. дифракционную решетку.
Дифракционная решетка — это совокупность многих параллельных щелей, разделенных непрозрачными промежутками. Общая длина щели и непрозрачного промежутка называется периодом решетки (d).
Дифракционную решетку можно получить, нанося на стеклянную пластинку параллельные штрихи с помощью алмазного резца. Хорошие дифракционные решетки имеют до 1000 и более штрихов на 1 мм, что позволяет получить большие углы дифракции, т.е. широкую дифракционную картину большой интенсивности. Рассмотрим дифракцию света от двух щелей при условии перпендикулярного падения света на них.
В этом случае фронт световой волны достигает щелей одновременно. Следовательно, образующиеся от щелей вторичные волны, являются когерентными. Волны, идущие по различным направлениям, будут интерферировать, давая дифракционную картину максимумов и минимумов. Выберем два параллельных луча (АА1) и (ВВ1), отклоненные от первоначального направления на угол а. Этот угол называется углом дифракции. Эти лучи, пройдя линзу, соберутся в ее фокальной плоскости (F) в точке О1, ослабив или усилив друг друга, причем АО1 = х1, ВО1 = х2. Пусть в точке О1 будет максимум колебаний. Тогда по условию максимумов ∆х = kλ (1). Выразим эту разность хода лучей из геометрии построения. Проведем перпендикуляр АС, построив тем самым фронт волны отклоненных лучей АА1 и ВВ1. Т.к. линза не вносит добавочной разности хода этих лучей, то ∆х = ВС и ВС = АВ sin?BAC. AB = d - период дифракционной решетки, угол ВАС = α, ∆х = dsin α (2).
Сравнивая (1) и (2), получим
kλ = dsinα
это уравнение дифракционной решетки, к = 0,±1, ±2, ±3... — порядок дифракционного максимума. Т.о. в фокальной плоскости возникает ряд чередующихся максимумов и минимумов, т.е. светлых и темных полос, разделенных промежутками. Если на решетку падает белый свет, то для различных длин волн положение дифракционных максимумов будет располагаться под различным дифракционным углом. Поэтому дифракционные решетки разлагают белый свет в дифракционный спектр и употребляются как дисперсионный прибор. С помощью дифракционной решетки, зная период решетки и определив угол дифракции, можно измерить длину световой волны по формуле:
λ =(d sinα)/k
- Колебания, волны, звук
- Физические основы гемодинамики
- Физический смысл градиента скорости:
- Величина градиента давления зависит:
- Моделирование. Механическая и электрическая модели кровообращения
- Методы определения скорости кровотока
- Способы измерения давления крови
- Медицинская электроника
- Диагностические электронные системы
- Классификация усми
- Геометрическая оптика. Фотометрия. Фотоэффект
- Законы отражения
- I закон: Луч падающий, перпендикуляр, восстановленный к границе раздела двух сред в точке падения, и луч отраженный лежат в одной плоскости.
- Законы преломления
- I закон: Луч падающий, перпендикуляр, восстановленный к границе раздела двух сред в точке падения, и преломленный луч лежат в одной плоскости.
- I I закон: Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред и называется показателем преломления второй среды относительно первой:
- Микроскоп
- Оптическая система глаза
- Недостатки оптической системы глаза и их устранение
- Фотометрия. Фотоэффект
- Первый закон освещенности:
- Второй закон освещенности:
- Фотоэффект
- I закон: Фототок насыщения j (т.Е. Максимальное число электронов, освобождаемых светом в 1с) прямо пропорционален световому потоку ф.
- II закон: Скорость фотоэлектронов пропорционально возрастает с увеличением частоты падающего света и не зависит от его интенсивности.
- Волновая оптика
- Разрешающая способность оптических систем
- Способы уменьшения предела разрешения
- Электронный микроскоп
- Поляризация света
- Свойства обыкновенного и необыкновенного лучей
- Способы получения поляризованного света.
- Механизм оптического излучения. Оптические квантовые генераторы
- Факторы действия:
- Эффект биологического действия лучей лазера зависит:
- Рентгеновское излучение
- При этом могут возникнуть три случая взаимодействия.
- Ядро атома. Радиоактивность
- Основные свойства ядерных сил:
- Дозиметрия ионизирующего излучения
- Материя и движение. Современные взгляды на природу вещества и поля
- Моделирование. Вероятностные методы диагностики
- Моделирование состоит из следующих стадий:
- Медицинская диагностика и возможности её автоматизации
- Вероятностные методы диагностики
- Структурные основы функционирования мембран
- Основные этапы работы атф-азы:
- Электрогенез биопотенциалов
- 1. Диффузный потенциал Δφд.
- 2. Равновесный мембранный потенциал Δφм(р).
- Активно-возбудимые среды
- Биофизика мышечного сокращения
- Активные и пассивные электрические свойства органов и тканей
- Современные методы обработки информации количественные показатели в биологии и медицине
- Элементы теории вероятности
- Распределение Максвелла
- Распределение Больцмана
- Нормальный закон распределения
- Элементы высшей математики
- Производная от функции в данной точке
- Некоторые правила нахождения производных
- Производные второго и высших порядков
- Возрастание и убывание функции
- Дифференциал функции
- Некоторые свойства дифференциала
- Неопределенный интеграл
- Основные свойства неопределенного интеграла
- Основные методы интегрирования
- Определенный интеграл
- Некоторые свойства определенного интеграла
- Техника вычисления определенного интеграла
- Дифференциальные уравнения
- Дифференциальные уравнения с разделенными и разделяющимися переменными
- Задачи на составление дифференциального уравнения
- Кибернетика и информатика
- Основные направления медицинской кибернетики:
- Использование теории информации в биологии и медицине:
- Основы вычислительной техники
- К центральным устройствам относятся:
- Программное обеспечение эвм
- Примеры простейших программ:
- Техника электробезопасности при работе с электронными медицинскими системами
- Классы защиты условной безопасности