logo
kollokvium_po_fizike

Рентгеновское излучение

В 1895 году Рентген обнаружил, что если через стеклянную трубку с двумя впаянными электро­дами, из которой выкачан воз­дух до давления 103 мм рт. ст., пропустить электрический ток, то анод выделяет особые, неизвестные до тех пор, неви­димые глазом лучи. Он назвал их Х-лучами. В России и во многих других стра­нах их стали на­зывать рентгеновскими лучами. Рентген, иссле­дуя их свойства, обнаружил следующее:

1.Они обладают сильной проникающей способ­ностью, кото­рая зависит от природы вещества и толщины его. Благодаря это­му свойству они по­лучили широкое распространение в меди­цине и промышленности.

2.Вызывают свечение (люминесценцию) некото­рых тел. С по­мощью экранов из таких веществ их можно наблюдать.

3.Оказывают действие на фотопленку (фотохи­мическое дей­ствие).

4.Способны активно ионизировать воздух и дру­гие вещества.

5.Оказывают биологическое действие на ткани организма, что нашло применение в лечении зло­качественных опухолей.

Однако природу рентгеновских лучей сам Рент­ген не раскрыл. Многие исследователи находили сходство между рентгеновскими лучами и свето­выми - они распространялись прямолинейно и не отклонялись ни в электриче­ском, ни в магнитном поле. Но, если предполо­жить одинаковую при­роду света и рентгеновских лучей, то рентгенов­ские лучи должны были бы обладать волновы­ми и квантовыми свойствами. Однако дифракцию рентгеновских лучей долгое время получить не удавалось. В 1910 году П.Н. Ле­бедев предложил использовать в качестве дифракционной решет­ки для рентгеновских лучей естественные кри­сталлы, а в 1912 году немецкий физик Лауэ вы­полнил этот опыт. Поток рентгеновского света направлялся через диафрагму на кристалл, при этом на эк­ране или фотопленке вокруг централь­ного светлого пятна (недифрагировавшие лучи) возникал ряд светлых точек, расположенных в определенном порядке.

Расстояние между атомами кристаллической ре­шетки, поряд­ка 1А°, соизмеримо с длиной волны и эти промежутки являются центрами вторичных волн, которые, дифрагируя, дают максиму­мы в виде белых пятен. Но т.к. атомы расположены не строго один около другого как щели дифракци­онной решетки, то максимумы расположены в сложном порядке, нежели в дифракцион­ной ре­шетке. Такая картина называ­ется лауэграммой. Этот опыт показал, что рентгеновские лучи имеют волновую природу.

Опыт Лауэ позволил использовать дифракцию рентгеновских лучей:

1. Для определения длины волны, зная расстоя­ние между ато­мами.

2. Для определения структуры веществ по лауэ­грамме, зная длину волны рентгеновских лучей.

Метод изучения молекулярных структур, т.е. оп­ределение по­ложения атомов в молекуле и их природы с помощью рентгено­вских лучей, полу­чил название рентгеноструктурный анализ. Для исследования биологических структур быть использованы различные явления взаимодейст­вия рентгеновского излучения с веществом: по­глощение, рассеяние и дифракция, инактивация (из­менение структуры молекул и функций их со­ставных частей под действием рентгеновского излучения). Метод рассеяния и дифрак­ции рент­геновских лучей использует их волновые свой­ства. Рент­геновские лучи, рассеи­ваемые атомами, входящими в состав мо­лекул, интерферируют и дают картину - лауэграмму, на которой положе­ние и интенсивности максиму­мов зависят от по­ложения атомов в молекуле и от взаимного рас­положения молекул. Если моле­кулы располо­жены хаотически, например, в растворах, то рас­сеяние не зависит от внутренней структуры мо­лекул, а в ос­новном от их размеров и формы.

В дальнейшем были изучены и другие свой­ства рентгеновских лучей:

1. Интерференция.

2. Преломление.

3. Полное внутрен­нее отражение.

4. Поляризация.

5. Спектральный со­став.

6. Взаимодействие с веществом.

Получают рентгено­вские лучи с помощью рент­геновской трубки.

Она состоит из стеклянного баллона с возможно высоким вакуу­мом (10-6- 10-7 мм. рт. ст.), в кото­ром находятся два электрода.

Катод - является источником электронов и вы­полняется в виде спирали. Анод состоит из мас­сивного медного стержня, на торцевом срезе ко­торого расположена пластина из вольфрама (зер­кальце анода). Электроны разгоняется в электри­ческом поле и взаимодействуют с зеркальцем анода. В результате взаимодействия образуется поток рентгеновских лучей. Вся трубка окружена свинцовым кожухом, имеется лишь небольшое окно для выхода излучения. Т.к. анод при работе силь­но разогревается, его охлаждают водой или маслом. В некоторых трубках анод делают вра­щающимся. Длина волны рентгеновских лучей от 0,001 до 2 нм. Рентгено­вское излучение харак­теризуется интенсивностью и жесткостью.

Интенсивность - это величина энергии, кото­рую несут рент­геновские лучи, через площадку 1 см2 за 1 с.

Жесткость рентгеновского излучения определя­ется его способностью проходить через веще­ство, а прони­кающая способность зависит от дли­ны волны. Рентгеновское излучение возника­ет в результате взаимодействия потока электронов с атомами зеркальца ано­да.

Двигающийся направ­ленно электрон можно представить электрическим током. Попадая в элек­трическое поле атома, движение элек­трона замедляется, что соответствует уменьшению тока. Уменьшение тока

вызовет изменяющееся магнитное поле вокруг электрона, а изме­няющееся магнитное поле на­ведет в смежных точках изменяюще­еся электри­ческое поле и т.д., т.о. при торможении электрона ато­мом возникает электромагнитная волна. Су­ществует и квантовая теория, объяс­няющая воз­никновение тормозного рентгенов­ского излуче­ния. Кроме круговых или эл­липти­ческих стацио­нарных орбит, называемых периодическими, существуют и не замкнутые орбиты электронов (параболические, гиперболи­ческие), по которым может двигаться электрон, не из­лучая и не по­глощая энергии. Подлетая к атому со скоростью υ1, электрон двигается по ста­ционарной не замк­нутой орбите с энергией Е1, тормозясь, он пе­ре­ходит на другую стационар­ную орбиту с энер­гией Е2, при этом излучается квант энергии. На­чальная кинетическая энергия электрона зависит только от ускоряющего напряжения 12/2=eU и есть величина постоян­ная. Конечная энергия в зависимости от условий торможения может при­нимать любые значения от 12/2 до 0. Следова­тельно, энергия излучен­ного кванта может быть любой в промежутке от 0 до 12/2. Спектр излу­чения сплошной, ограниченный со стороны

коротких длин волн.

hv =(12)/2 – (22)/2

Минимальная энергия кванта определяется из этого уравнения,

если (22)/2= 0, тогда или hvmin =(12)/2

hc/λmax =eU, откуда λmax = (hc)/(eU)

Электрон, взаимодействуя с атомом анода, может удалить ор­битальный электрон с ближайшей к ядру орбиты К, L, М на более отдаленную или вообще за пределы атома. На освободившееся ме­сто перейдет электрон с более удаленной ор­биты. При этом излу­чается квант рентгенов­ского излучения, длина волны которого оп­ределяется разностью дозволенных энергетиче­ских состоя­ний ато­ма (hv = E2- E1). Следова­тельно, излуче­ние может быть только оп­реде­ленных длин волн, спектр такого излучения будет линейчатым, а из­лучение называют характеристическим.

При бомбардировке вещества анода электрона­ми существуют оба вида излучения. Рассмотрим схему рентгеновского аппарата.

В состав рентгеновско­го аппарата входят следую­щие узлы:

1. Рентгеновская труб­ка (РТ)

2. Повышающий трансформатор (ТР2).

3. Понижающий трансформатор (ТР,).

4. Автотрансформатор (АТР).

5. Высоковольтный выпрямитель (В).

Первичная обмотка повышающего трансформа­тора питается от сети переменного тока через ав­тотрансформатор. Автотранс­форматор служит для регулировки напряжения между анодом и катодом. Изменение напряжения изменяет длину волны λmin=l,24/ U, а длина волны характеризует жесткость излучения, т.о. авто­трансформатор служит для регулировки жесткости рентгенов­ско­го излучения. Напряжение между анодом и катодом рентгено­вской трубки в медицинских рентгеновских аппаратах до 60 кВ, в промыш­ленных - 200 - 250 кВ. Питается трубка постоян­ным током. В качестве выпрямителя использу­ются высоковольтные диоды или кенотроны, ис­пользу­ются однополупериодные и двухполупе­риодные схемы. Для питания накала трубки слу­жит понижающий трансформа­тор ТР1. В пер­вичную цепь этого трансформатора ставится рео­с­тат R. Изменяя сопротивление, мы изменяем ток накала катода, а, следовательно, его темпера­туру и число испускаемых электронов. Число элек­тронов характеризует интенсивность рентге­нов­ского излучения, т.о. реостат R служит для изме­нения интенсивности из­лучения, которая опреде­ляется следующей формулой:

Ф = kJU2Z',

где J - анодный ток, U - напряжение между като­дом и анодом трубки, Z - порядковый номер ве­щества зеркальца анода. Защита от воздействия рентгеновского излучения, даваемо­го лечебными и диагностическими аппаратами, сводится к сле­дующему:

1.Экранизация источника излучения. Рентгенов­ская трубка самозащитная. Камера закрывается свинцовыми листами.

2.Индивидуальная защита обслуживающего пер­сонала (фартук, перчатки, стекло экрана делается из просвинцованного материала).

3. Охраняются законом (меньший рабочий день, дополнитель­ный отпуск, спецпитание и др.)

При взаимодействии рентгеновских лучей с ве­ществом, часть их отражается от поверхности, часть проходит через вещество без взаимодейст­вия, часть проходит вовнутрь вещества, взаимо­дей­ствуя с атомами.