Рентгеновское излучение
В 1895 году Рентген обнаружил, что если через стеклянную трубку с двумя впаянными электродами, из которой выкачан воздух до давления 103 мм рт. ст., пропустить электрический ток, то анод выделяет особые, неизвестные до тех пор, невидимые глазом лучи. Он назвал их Х-лучами. В России и во многих других странах их стали называть рентгеновскими лучами. Рентген, исследуя их свойства, обнаружил следующее:
1.Они обладают сильной проникающей способностью, которая зависит от природы вещества и толщины его. Благодаря этому свойству они получили широкое распространение в медицине и промышленности.
2.Вызывают свечение (люминесценцию) некоторых тел. С помощью экранов из таких веществ их можно наблюдать.
3.Оказывают действие на фотопленку (фотохимическое действие).
4.Способны активно ионизировать воздух и другие вещества.
5.Оказывают биологическое действие на ткани организма, что нашло применение в лечении злокачественных опухолей.
Однако природу рентгеновских лучей сам Рентген не раскрыл. Многие исследователи находили сходство между рентгеновскими лучами и световыми - они распространялись прямолинейно и не отклонялись ни в электрическом, ни в магнитном поле. Но, если предположить одинаковую природу света и рентгеновских лучей, то рентгеновские лучи должны были бы обладать волновыми и квантовыми свойствами. Однако дифракцию рентгеновских лучей долгое время получить не удавалось. В 1910 году П.Н. Лебедев предложил использовать в качестве дифракционной решетки для рентгеновских лучей естественные кристаллы, а в 1912 году немецкий физик Лауэ выполнил этот опыт. Поток рентгеновского света направлялся через диафрагму на кристалл, при этом на экране или фотопленке вокруг центрального светлого пятна (недифрагировавшие лучи) возникал ряд светлых точек, расположенных в определенном порядке.
Расстояние между атомами кристаллической решетки, порядка 1А°, соизмеримо с длиной волны и эти промежутки являются центрами вторичных волн, которые, дифрагируя, дают максимумы в виде белых пятен. Но т.к. атомы расположены не строго один около другого как щели дифракционной решетки, то максимумы расположены в сложном порядке, нежели в дифракционной решетке. Такая картина называется лауэграммой. Этот опыт показал, что рентгеновские лучи имеют волновую природу.
Опыт Лауэ позволил использовать дифракцию рентгеновских лучей:
1. Для определения длины волны, зная расстояние между атомами.
2. Для определения структуры веществ по лауэграмме, зная длину волны рентгеновских лучей.
Метод изучения молекулярных структур, т.е. определение положения атомов в молекуле и их природы с помощью рентгеновских лучей, получил название рентгеноструктурный анализ. Для исследования биологических структур быть использованы различные явления взаимодействия рентгеновского излучения с веществом: поглощение, рассеяние и дифракция, инактивация (изменение структуры молекул и функций их составных частей под действием рентгеновского излучения). Метод рассеяния и дифракции рентгеновских лучей использует их волновые свойства. Рентгеновские лучи, рассеиваемые атомами, входящими в состав молекул, интерферируют и дают картину - лауэграмму, на которой положение и интенсивности максимумов зависят от положения атомов в молекуле и от взаимного расположения молекул. Если молекулы расположены хаотически, например, в растворах, то рассеяние не зависит от внутренней структуры молекул, а в основном от их размеров и формы.
В дальнейшем были изучены и другие свойства рентгеновских лучей:
1. Интерференция.
2. Преломление.
3. Полное внутреннее отражение.
4. Поляризация.
5. Спектральный состав.
6. Взаимодействие с веществом.
Получают рентгеновские лучи с помощью рентгеновской трубки.
Она состоит из стеклянного баллона с возможно высоким вакуумом (10-6- 10-7 мм. рт. ст.), в котором находятся два электрода.
Катод - является источником электронов и выполняется в виде спирали. Анод состоит из массивного медного стержня, на торцевом срезе которого расположена пластина из вольфрама (зеркальце анода). Электроны разгоняется в электрическом поле и взаимодействуют с зеркальцем анода. В результате взаимодействия образуется поток рентгеновских лучей. Вся трубка окружена свинцовым кожухом, имеется лишь небольшое окно для выхода излучения. Т.к. анод при работе сильно разогревается, его охлаждают водой или маслом. В некоторых трубках анод делают вращающимся. Длина волны рентгеновских лучей от 0,001 до 2 нм. Рентгеновское излучение характеризуется интенсивностью и жесткостью.
Интенсивность - это величина энергии, которую несут рентгеновские лучи, через площадку 1 см2 за 1 с.
Жесткость рентгеновского излучения определяется его способностью проходить через вещество, а проникающая способность зависит от длины волны. Рентгеновское излучение возникает в результате взаимодействия потока электронов с атомами зеркальца анода.
Двигающийся направленно электрон можно представить электрическим током. Попадая в электрическое поле атома, движение электрона замедляется, что соответствует уменьшению тока. Уменьшение тока
вызовет изменяющееся магнитное поле вокруг электрона, а изменяющееся магнитное поле наведет в смежных точках изменяющееся электрическое поле и т.д., т.о. при торможении электрона атомом возникает электромагнитная волна. Существует и квантовая теория, объясняющая возникновение тормозного рентгеновского излучения. Кроме круговых или эллиптических стационарных орбит, называемых периодическими, существуют и не замкнутые орбиты электронов (параболические, гиперболические), по которым может двигаться электрон, не излучая и не поглощая энергии. Подлетая к атому со скоростью υ1, электрон двигается по стационарной не замкнутой орбите с энергией Е1, тормозясь, он переходит на другую стационарную орбиту с энергией Е2, при этом излучается квант энергии. Начальная кинетическая энергия электрона зависит только от ускоряющего напряжения mυ12/2=eU и есть величина постоянная. Конечная энергия в зависимости от условий торможения может принимать любые значения от mυ12/2 до 0. Следовательно, энергия излученного кванта может быть любой в промежутке от 0 до mυ12/2. Спектр излучения сплошной, ограниченный со стороны
коротких длин волн.
hv =(mυ12)/2 – (mυ22)/2
Минимальная энергия кванта определяется из этого уравнения,
если (mυ22)/2= 0, тогда или hvmin =(mυ12)/2
hc/λmax =eU, откуда λmax = (hc)/(eU)
Электрон, взаимодействуя с атомом анода, может удалить орбитальный электрон с ближайшей к ядру орбиты К, L, М на более отдаленную или вообще за пределы атома. На освободившееся место перейдет электрон с более удаленной орбиты. При этом излучается квант рентгеновского излучения, длина волны которого определяется разностью дозволенных энергетических состояний атома (hv = E2- E1). Следовательно, излучение может быть только определенных длин волн, спектр такого излучения будет линейчатым, а излучение называют характеристическим.
При бомбардировке вещества анода электронами существуют оба вида излучения. Рассмотрим схему рентгеновского аппарата.
В состав рентгеновского аппарата входят следующие узлы:
1. Рентгеновская трубка (РТ)
2. Повышающий трансформатор (ТР2).
3. Понижающий трансформатор (ТР,).
4. Автотрансформатор (АТР).
5. Высоковольтный выпрямитель (В).
Первичная обмотка повышающего трансформатора питается от сети переменного тока через автотрансформатор. Автотрансформатор служит для регулировки напряжения между анодом и катодом. Изменение напряжения изменяет длину волны λmin=l,24/ U, а длина волны характеризует жесткость излучения, т.о. автотрансформатор служит для регулировки жесткости рентгеновского излучения. Напряжение между анодом и катодом рентгеновской трубки в медицинских рентгеновских аппаратах до 60 кВ, в промышленных - 200 - 250 кВ. Питается трубка постоянным током. В качестве выпрямителя используются высоковольтные диоды или кенотроны, используются однополупериодные и двухполупериодные схемы. Для питания накала трубки служит понижающий трансформатор ТР1. В первичную цепь этого трансформатора ставится реостат R. Изменяя сопротивление, мы изменяем ток накала катода, а, следовательно, его температуру и число испускаемых электронов. Число электронов характеризует интенсивность рентгеновского излучения, т.о. реостат R служит для изменения интенсивности излучения, которая определяется следующей формулой:
Ф = kJU2Z',
где J - анодный ток, U - напряжение между катодом и анодом трубки, Z - порядковый номер вещества зеркальца анода. Защита от воздействия рентгеновского излучения, даваемого лечебными и диагностическими аппаратами, сводится к следующему:
1.Экранизация источника излучения. Рентгеновская трубка самозащитная. Камера закрывается свинцовыми листами.
2.Индивидуальная защита обслуживающего персонала (фартук, перчатки, стекло экрана делается из просвинцованного материала).
3. Охраняются законом (меньший рабочий день, дополнительный отпуск, спецпитание и др.)
При взаимодействии рентгеновских лучей с веществом, часть их отражается от поверхности, часть проходит через вещество без взаимодействия, часть проходит вовнутрь вещества, взаимодействуя с атомами.
- Колебания, волны, звук
- Физические основы гемодинамики
- Физический смысл градиента скорости:
- Величина градиента давления зависит:
- Моделирование. Механическая и электрическая модели кровообращения
- Методы определения скорости кровотока
- Способы измерения давления крови
- Медицинская электроника
- Диагностические электронные системы
- Классификация усми
- Геометрическая оптика. Фотометрия. Фотоэффект
- Законы отражения
- I закон: Луч падающий, перпендикуляр, восстановленный к границе раздела двух сред в точке падения, и луч отраженный лежат в одной плоскости.
- Законы преломления
- I закон: Луч падающий, перпендикуляр, восстановленный к границе раздела двух сред в точке падения, и преломленный луч лежат в одной плоскости.
- I I закон: Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред и называется показателем преломления второй среды относительно первой:
- Микроскоп
- Оптическая система глаза
- Недостатки оптической системы глаза и их устранение
- Фотометрия. Фотоэффект
- Первый закон освещенности:
- Второй закон освещенности:
- Фотоэффект
- I закон: Фототок насыщения j (т.Е. Максимальное число электронов, освобождаемых светом в 1с) прямо пропорционален световому потоку ф.
- II закон: Скорость фотоэлектронов пропорционально возрастает с увеличением частоты падающего света и не зависит от его интенсивности.
- Волновая оптика
- Разрешающая способность оптических систем
- Способы уменьшения предела разрешения
- Электронный микроскоп
- Поляризация света
- Свойства обыкновенного и необыкновенного лучей
- Способы получения поляризованного света.
- Механизм оптического излучения. Оптические квантовые генераторы
- Факторы действия:
- Эффект биологического действия лучей лазера зависит:
- Рентгеновское излучение
- При этом могут возникнуть три случая взаимодействия.
- Ядро атома. Радиоактивность
- Основные свойства ядерных сил:
- Дозиметрия ионизирующего излучения
- Материя и движение. Современные взгляды на природу вещества и поля
- Моделирование. Вероятностные методы диагностики
- Моделирование состоит из следующих стадий:
- Медицинская диагностика и возможности её автоматизации
- Вероятностные методы диагностики
- Структурные основы функционирования мембран
- Основные этапы работы атф-азы:
- Электрогенез биопотенциалов
- 1. Диффузный потенциал Δφд.
- 2. Равновесный мембранный потенциал Δφм(р).
- Активно-возбудимые среды
- Биофизика мышечного сокращения
- Активные и пассивные электрические свойства органов и тканей
- Современные методы обработки информации количественные показатели в биологии и медицине
- Элементы теории вероятности
- Распределение Максвелла
- Распределение Больцмана
- Нормальный закон распределения
- Элементы высшей математики
- Производная от функции в данной точке
- Некоторые правила нахождения производных
- Производные второго и высших порядков
- Возрастание и убывание функции
- Дифференциал функции
- Некоторые свойства дифференциала
- Неопределенный интеграл
- Основные свойства неопределенного интеграла
- Основные методы интегрирования
- Определенный интеграл
- Некоторые свойства определенного интеграла
- Техника вычисления определенного интеграла
- Дифференциальные уравнения
- Дифференциальные уравнения с разделенными и разделяющимися переменными
- Задачи на составление дифференциального уравнения
- Кибернетика и информатика
- Основные направления медицинской кибернетики:
- Использование теории информации в биологии и медицине:
- Основы вычислительной техники
- К центральным устройствам относятся:
- Программное обеспечение эвм
- Примеры простейших программ:
- Техника электробезопасности при работе с электронными медицинскими системами
- Классы защиты условной безопасности