Классификация усми
Различного вида электроды используются и для подведения к организму внешнего воздействия.
Электроды как устройства съема различаются:
1.По виду регистрируемого сигнала (ЭКГ, ЭМГ, ЭЭГ, ЭГГ, ЭОГ и др.).
2.По материалу (металлические, угольные, стеклянные). Стеклянные правильно называть электролитическими, т. к. проводником является раствор электролита (КС1 и др.), который заключен в стеклянную канюлю.
3.По конструкции (плоские, игольчатые, многоточечные).
4.По площади (чем меньше площадь, тем более локально отводятся биопотенциалы).
5.По назначению: одноразовые — используются в кабинете функциональной диагностики; длительного наблюдения - в палатах реанимации; динамического наблюдения - в физиологии труда и спорта; экстренного применения - скорая помощь.
6.По месту расположения (поверхностные и вкалывающие). Поверхностные электроды должны иметь контактное сопротивление 10-15 кОм, поэтому их накладывают через токопроводящие пасты и прокладки.
Очень часто приходится регистрировать изменение характеристик организма и окружающей среды, которые по своей природе не являются электрическими. Их называют входные неэлектрические величины, обусловленные жизненными функциями, к ним относятся:
1. Механические (перемещение, скорость, ускорение, акустические параметры, давление, вибрации и др.).
2. Физические (тепловые: температура, энергия, количество теплоты; электрические: характеристики электрического (Е, ε, у), магнитного поля (B, μ ,v), импеданс и др.; оптические: показатель преломления, сила света, освещенность, яркость; атомные и ядерные: спектральный состав, масса атомов и ядер, активность излучения, дозы и др.).
3. Химические (химический состав, концентрация, рН).
4. Физиологические (кровенаполнение, пульс и др.).
Для измерения этих величин используются датчики (преобразователи).
ДАТЧИКИ— это УСМИ, которые своим чувствительным элементом реагируют на воздействие измеряемой величины и осуществляют преобразование этого воздействия в форму, удобную для последующего усиления, регистрации, обработки (как правило в электрические сигналы)
В энергетических датчиках создается смодулированный (с неменяющимися параметрами) поток энергии. Измеряемый параметр изменяет этот поток (модулирует), эти изменения регистрируются чувствительным элементом. Таким образом, общую схему измерения энергетическими датчиками можно представить так: источник энергии - объект исследования - чувствительный элемент.
В фотоэлектрическом датчике (1) создается световой поток Фо. При прохождении через ткани организма поток меняется, в качестве регистрирующего устройства может использоваться фоторезистор, фотоэлемент, фотопластинка. В рентгеновских датчиках (аппаратах) (2) в качестве излучения используются рентгеновские лучи, а в качестве чувствительного элемента - фотопластинка, люминесцентный экран, рентгеночувстительный экран. При ультразвуковом исследовании - (УЗИ) (3) используется поток УЗ-волн, а для регистрации, как правило, пьезодатчики. В биоуправляемых активных (генераторных) датчиках под воздействием измеряемой величины генерируются пропорциональные ей электрические сигналы. Наиболее часто употребляемые датчики: термопары (1), тензодатчики (2), индукционные (3), полупроводниковые вентильные фотоэлементы (4).
В термопарах имеются два спая, в которых соединяются два различных проводника или полупроводника. В каждом из спаев создаются контактные разности потенциалов. Суммарная разность потенциалов определяет ЭДС термопары. ЭДС пропорциональна разности температур спаев ε = к (Т1 - Т2), где к зависит от типа соединяемых проводников или полупроводников. В тензодатчиках используется прямой пьезоэлектрический эффект - при воздействии на некоторые кристаллы (кварца, титанат бария и других) внешней силой, в результате структурной поляризации, на поверхности этих кристаллов появляется разность потенциалов, пропорциональная приложенной силе. В индукционных датчиках, при перемещении постоянного магнита относительно катушки, возникает ЭДС индукции, которая определяется по закону Фарадея ε = - ∆Ф/∆t. В конечном итоге ЭДС пропорциональна скорости перемещения постоянного магнита. В полупроводниковых вентильных фотоэлементах используются кристаллы селена. Внутри селеновой пластины за счет технологии изготовления создается запирающий слой, который не пропускает основных носителей заряда. При освещении фотоэлемента в верхнем слое возникают пары электрон-дырка. За счет запирающего слоя они разделяются и образуется фото ЭДС, пропорциональная световому потоку.
Биоуправляемые пассивные (параметрические) датчики представляют собой замкнутую электрическую цепь, в состав которой входят: источник постоянного или переменного напряжения, измерительный прибор (амперметр) и сопротивление R, величина которого меняется пропорционально изменению измеряемого
неэлектрического сигнала организма. По закону Ома пропорционально изменяется и ток в цепи, поэтому шкала измерительного прибора градуируется в единицах измеряемой неэлектрической величины. По виду сопротивления параметрические датчики подразделяются на: резистивные, емкостные, индуктивные и контактные.
В резистивных датчиках используются: активное переменное сопротивление, движок которого перемещается пропорционально механическому перемещению органов тела человека; терморезистор, величина которого меняется пропорционально температуре измеряемого объекта; фоторезистор, его сопротивление меняется при изменении светового потока; в качестве сопротивления можно подключать непосредственно ткани организма. В этом случае измеряется импеданс (общее сопротивление ткани переменному току). В емкостных датчиках сопротивлением является конденсатор. Как известно емкость конденсатора определяется формулой: C = (εε0S)/(4πd),
а величина емкостного сопротивления R = 1/(ωC)
Таким образом, емкостное сопротивление будет меняться при изменении относительной диэлектрической проницаемости (е), площади пластин (S), расстояния между пластинами (d). Величина этих параметров меняется, либо при механической перемещении частей тела, либо при изменении влажности и температуры среды между пластинами конденсатора. В индуктивных датчиках используется катушка с ферромагнитным сердечником. Ее индуктивность (L) зависит от магнитной проницаемости сердечника (μ), числа витков катушки (n), размеров катушки (d,l). Величина индуктивного сопротивления определяется формулой RL = ωL. В контактных датчиках вместо сопротивления используются два контакта, которые замыкаются или размыкаются при периодическом движении, например, при изменении размеров грудной клетки при вдохе и выдохе. Для правильного использования датчиков необходимо знать их метрологические характеристики. Датчики должны периодически проверяться метрологическими службами. К метрологическим характеристикам относятся:
1. Чувствительность - это изменение выходного сигнала при изменении входного сигнала на единицу. Например, чувствительность термопары определяется формулой: k =∆ε/∆t
2. Предел чувствительности - минимальное значение изменения входного сигнала, которое можно зарегистрировать с помощью датчика.
3. Динамический диапазон - диапазон входных неэлектрических величин от предела чувствительности до максимального значения, регистрируемого датчиком без искажения.
4. Погрешность - разность между измеренным и действительным значением величины.
5. Время реакции (инерционность) показывает, на сколько величина выходного сигнала датчика отстает по времени (по фазе) от входного.
В качестве примеров использования датчиков рассмотрим измерение температуры, параметров системы дыхания и сердечнососудистой системы. Различают температуру поверхности и температуру ядра тела. Температура поверхности тела зависит не только от состояния организма, но и от внешней среды: температуры и давления воздуха, его влажности. Поэтому, как правило, температуру поверхности измеряют с точки зрения симметричности температурных полей левой и правой области тела человека. Температура ядра является более стабильным показателем и она определяется в основном состоянием внутренней среды организма. Измеряют температуру ядра непосредственным помещением датчика в мышцу и отдельные органы, ректальную температуру, в полости рта, в подмышечной впадине, паховой области, пупочной ямке. Для измерения температуры человеческого тела в качестве датчиков используются: полупроводниковые термосопротивления (термисторы), и термоэлементы (термопары).
Основными параметрами, измеряемыми в системе дыхания, являются частота дыхания и глубина дыхания. Измерение этих параметров производится по механическому перемещению грудной клетки и по противоположно направленным потокам воздуха при вдохе и выдохе, имеющими разную температуру и влажность. Механические перемещения грудной клетки оценивают контактными и резистивными (с активным сопротивлением) датчиками. Потоки воздуха измеряют емкостными датчиками, термисторами, термопарой. Для оценки деятельности сердечно-сосудистой системы используются неэлектрические параметры: частота пульса, параметры пульсовой волны, систолическое и диастолическое давление, тоны и шумы сердца, механические перемещения органов и тканей, связанные с одномоментым выбрасыванием ударного объема крови из левого желудочка и др. Частоту пульса и пульсовые волны (сфигмография) измеряют тензодатчиками. Механические перемещения грудной клетки в области верхушечного толчка (сейсмография) оценивают индукционными датчиками. Тоны и шумы сердца (фонокардиография) измеряют с помощью микрофонов, которые по сути представляют также датчики индукционной системы. Для измерения давления используют тензодатчики, основанные на пьезоэффекте. Эти датчики вносят в крупные кровеносные сосуды и в полости сердца. Исследование кровенаполнения и оценка тонуса кровеносных сосудов (плетизмография) производится импедансометрическими датчиками, энергетическими, фотоэлектрическими и тензодатчиками. Определение скорости кровотока производится энергетическими ультразвуковыми датчиками, метод измерения основан на эффекте Допплера.
Электрические сигналы на выходе УСМИ, как правило, имеют малую величину (амплитуду). Для регистрации их необходимо усилить. Для этих целей используются устройства усиления (УУ).
Устройства усиления напряжения, тока, мощности электрических колебаний за счет энергии постороннего источника называются усилителем колебаний.
Элементной основой усилителя является триод, вакуумный или полупроводнковый (транзистор). Не вдаваясь в подробности работы усилителя, рассмотрим общие принципы усилителя напряжения.
1.Колебания входного напряжения на сетке лампы создают пропорциональные колебания анодного тока (в случае использования транзистора колебания тока в цепи эммитер-коллектор).
2. Изменяющийся анодный ток создает на нагрузочном сопротивлении R пульсирующее напряжение, состоящее из постоянной и переменной составляющей.
3. Переменная составляющая этого напряжения, выделенная с помощью разделительного конденсатора, и является усиленным выходным напряжением.
Из рассмотренного видно, что принципиальные схемы и принцип работы вакуумного и транзисторного усилителей идентичны. Главным параметром усилителя является коэффициент усиления. Он показывает во сколько раз амплитуда выходного напряжения больше амплитуды входного напряжения.
k = Umвых/Umвх
Приведенные схемы усилителей являются однокаскадными. Для регистрации электрических сигналов одного каскада, как правило, бывает недостаточно. Поэтому используют усилители, состоящие из нескольких каскадов, которые подключаются последовательно друг с другом. Коэффициент усиления многокаскадного усилителя равен произведению коэффициентов усиления всех каскадов.
K = k1*k2*k3
При использовании усилителей в медицине важно, чтобы форма выходного напряжения соответствовала форме входного напряжения, говорят, чтобы усилитель не искажал усиливаемый сигнал. В противном случае будут возникать серьезные ошибки в диагностике заболеваний. Различают три вида искажения сигналов в усилителях: амплитудные, за счет сеточных токов, частотные. Эти искажения устраняются разработчиками усилителей, согласно представленной информации о параметрах усиливаемых сигналов. Частотные искажения связаны с так называемой полосой пропускания усилителей. Для каждого усилителя определяется частотная характеристика — это зависимость коэффициента усиления от частоты гармонического сигнала, подаваемого на вход усилителя. Частотная характеристика представлена в графической форме.
Полоса частот от v, до v2, в пределах которой коэффициент усиления практически не меняется, называется полосой пропускания усилителя. Биологические сигналы не являются гармоническими, однако их можно разложить на сумму гармоник, различающихся по частоте и амплитуде. Если все частоты гармоник входят в полосу пропускания, то искажений не будет. Если хотя бы одна гармоническая составляющая выходит за пределы полосы пропускания, то сигнал на выходе не будет соответствовать сигналу на входе, произойдет искажение сигнала. Так как биологические кривые различаются по гармоническому спектру, то усилители для одного сигнала, например ЭКГ, не могут использоваться для усиления другого вида сигналов - ЭЭГ, ЭМГ и др. Для того, чтобы использовать усилители для усиления электрических потенциалов, возникающих в организме человека и животных, необходимо четко представлять себе биоэлектрическую активность органов человека и их характеристики.
Биоэлектрическая активность характеризуется следующими параметрами:
1. Диапазон амплитуд электрических колебаний составляет от единиц мкВ до единиц мВ.
2. Диапазон частот охватывает область частот от долей Гц до 10 кГц.
3. Внутреннее сопротивление ткани не является чисто активным и составляет порядка тысяч и десятков тысяч Ом.
Кроме этого при регистрации биопотенциалов приходится иметь дело со следующими особенностями:
а) регистрация биоэлектрических процессов, как правило, производится при одновременной записи нескольких сигналов.
б) при регистрации объект находится в поле действия различного рода полей, которые иногда достигают большого уровня по сравнению с уровнем регистрируемого потенциала.
Весьма низкие амплитуды биопотенциалов с одной стороны и большие напряжения, которые необходимо подать на регистрирующие устройства, с другой стороны, заставляют конструировать усилители с большим коэффициентом усиления (до нескольких миллионов раз). Малые входные напряжения приводят к тому, что в усилителях приходится считаться с собственными шумами входных каскадов, а из-за большого коэффициента усиления со склонностью таких усилителей к самовозбуждению. Необходимость пропускания очень низких частот усложняет питание усилителя от одного общего источника питания. Это делает усилитель очень чувствительным к медленным изменениям напряжения источников питания, а работу усилителя неустойчивой. В связи с большим сопротивлением ткани входное сопротивление усилителя должно быть большим. Одновременная регистрация нескольких процессов на одном объекте приводит к тому, что входы усилителей оказываются соединенными между собой через сопротивление тканей. Для борьбы с помехами экранируются как сам объект, так и входные элементы усилителей и сами усилители.
Входные каскады усилителей должны удовлетворять следующим требованиям:
1. Уровень собственных шумов должен быть очень низок.
2. Входное сопротивление каскада и собственно всего усилителя должно быть большим.
3. Каскад должен быть защищен от механических колебаний.
4. Схема каскада должна давать возможность производить регистрацию нескольких процессов и без экранирующей камеры.
В таблице перечислены основные параметры электрографических сигналов.
Устройства отображения и регистрации медицинской информации (УОРМИ) позволяют получать в графической или иной форме характеристики параметров контролируемого объекта. Устройства отображения осуществляют временное представление информации, а устройства регистрации позволяют длительное время хранить информацию и многократно обращаться к ней для последующей обработки и более глубокого анализа.
Классификация УОРМИ
.
Аналоговые регистрирующие и отображающие устройства применяются для представления информации об изменении одного или нескольких параметров, которые желательно контролировать непрерывно (например, при регистрации ЭКГ). Действие аналоговых УОРМИ основано на общем принципе действие постоянного магнитного поля на проводник с током. Проволочную рамку помещают между полюсами постоянного магнита.
На клеммы рамки подается переменное напряжение от устройства усиления, по форме соответствующее изменению регистрируемого параметра организма человека. В рамке возникает ток, пропорциональный приложенному напряжению. В левой и правой части рамки токи противоположно направлены. Возникает пара сил, которые поворачивают рамку вокруг оси. Угол поворота пропорционален приложенному напряжению. Приборы, основанные на этом принципе, называются приборами электромагнитной системы. В показывающих (стрелочных) приборах рамка соединена со стрелкой, которая поворачивается вместе с рамкой и указывает на шкале величину регистрируемого параметра. Шкала прибора проградуирована в единицах измерения регистрируемого параметра. В светолучевых регистраторах на рамку наклеивают легкое зеркальце. На зеркальце посылается луч света. Отраженный луч вычерчивает на движущейся фотопленке или фотобумаге график изменения во времени регистрируемой величины. Этот вид регистраторов имеет наименьшую из аналоговых инерционность и используется для регистрации быстроменяющихся параметров. В самописцах рамка соединяется со специальным пером, которое вычерчивает на движущейся бумаге развернутую диаграмму контролируемой величины.
- в перьевых самописцах перо представляет стержень, заполненный чернилами (можно использовать стержень авторучки);
- в струйных самописцах перо не касается бумаги, чернила выбрасываются под давлением из специального отверстия.
- при тепловой и электрохимической регистрации пером служит заостренный металлический стержень. В этих видах записи используется специальное покрытие бумаги, которое разлагается и меняет цвет по следу, в тепловых в результате трения пера о бумагу, в электрохимических под действием напряжения, приложенного между пером и бумагой.
В дискретных УОРМИ измеряемый параметр регистрируется в буквенном или цифровом виде не непрерывно, а через определенные промежутки времени. В цифропечатающих устройствах буквы или цифры отображаются на обычной бумаге. При последовательной печати печатание каждого знака требует одного механического перемещения литеры. При параллельной печати при однократном механическом перемещении может печататься слово, строка, абзац, лист, что значительно сокращает время печати.
Цифровые индикаторы отображают цифры, буквы, знаки на экране.
- оптические регистраторы отображают информацию на обычном стекле путем просвечивания через трафарет (в современных приборах практически не используются);
- газоразрядные индикаторы основаны на принципе свечения разряженных газов вокруг проводника, на который подается достаточно высокое постоянное напряжение. Проводником является обычная проволока, изогнутая по форме буквы или цифры;
- наиболее часто в современных регистраторах используется люминесцентная индикация. Экран такого индикатора представляет совокупность кристалликов, которые меняют цвет или контрастность, если на них подается постоянное напряжение. Совокупность таких контрастных кристалликов и создает изображение буквы или цифры.
В комбинированных УОРМИ информация может отображаться как непрерывно, так и дискретно. Электронно - лучевая трубка используется для отображения информации в электронных осцилографах и видеоприемниках. Принцип действия их достаточно хорошо известен. Основным достоинством этих регистраторов является их малая инерционность, они способны регистрировать самые быстро меняющиеся процессы. Принцип магнитной записи основан на том, что записывающая головка создает переменное магнитное поле пропорциональное величине регистрируемого сигнала. Магнитное поле соответственно меняет состояние магнитного порошка на магнитной ленте или диске. Магнитная запись это единственное УОРМИ, которое не требует преобразования регистрируемой информации для дальнейшей передачи и обработки информации на ЭВМ. В современных диагностических системах используются в комплексе все виды рассмотренных электронных устройств, начиная от УСМИ и кончая СОМИ. Примером может служить УЗИ, компьютерная томография, видеомониторинговые системы.
Лечебные электронные системы
Одним из наиболее широко распространенных методов лечения и профилактики заболеваний являются методы высокочастотной терапии. Это воздействие на ткани и органы высокочастотных электромагнитных колебаний. Получают электромагнитные колебания с помощью колебательного контура.
Идеальный колебательный контур состоит из катушки индуктивности и конденсатора. Если зарядить конденсатор такого контура, то в нем возникнут периодически повторяющиеся процессы перехода электрического поля конденсатора в энергию магнитного поля катушки и обратно посредством электрического тока. При определенных условиях от колебательного контура в пространстве будет распространятся электромагнитная волна. Совокупность этих физических факторов и носит название электромагнитных колебаний. Изменение этих факторов в идеальном колебательном контуре происходит по гармоническому закону. Период колебаний в контуре определяется емкостью конденсатора и индуктивностью катушки по известной формуле Томсона Т = 2π(LC)1/2
В реальном колебательном контуре присутствует активное сопротивление, поэтому колебания в нем будут затухающими. Если периодически заряжать конденсатор контура, то после каждой зарядки в нем будет возникать залп высокочастотных затухающих колебаний. Воздействие на ткани и органы человека затухающими колебаниями тока называется местной дарсонвализацией. Аппарат для воздействия носит название генератор Д'Арсонваля. Периодическая зарядка конденсатора контура с ударным возбуждением осуществляется с помощью генератора прямоугольных импульсов. Частота повторения прямоугольных импульсов 50 Гц. Частота высокочастотных колебаний тока в контуре 110 кГц. Во вторичной катушке наводится ЭДС индукции напряжением 20 - 30 кВ. Воздействие осуществляется стеклянным электродом, заполненым воздухом при давлении 0,1 - 0,5 мм. рт. ст. Второго электрода нет, однако цепь замкнута через воздушную среду, которую можно представить в виде конденсатора (пунктирные линии). Действующим фактором является высокочастотный разряд (ток), возникающий между электродом и поверхностью тела пациента. Интенсивность высокочастотного разряда меняется от "тихого", вызывающего тонизирующее действие на нервные рецепторы кожи и слизистой, до слабого искрового, оказывающего уже раздражающее, а в отдельных случаях легкое прижигающее действие. Для получения незатухающих колебаний необходимо периодически пополнять энергию контура от постороннего источника напряжения. Для этих целей используется генератор электрических колебаний.
Генератор состоит из:
1.Колебательного контура;
2.Триода с катушкой обратной связи;
3.Источника постоянного электрического напряжения.
При подключении источника питания конденсатор контура заряжается до определенного напряжения и в контуре возникает ток, изменяющийся по гармоническому закону. В первой четверти периода ток в контуре возрастет от 0 до Jmax. В этот период времени в катушке связи индуцируется ЭДС, приложенная "+" к сетке, лампа открыта, происходит пополнение энергии контура. Во второй четверти периода ток уменьшается от Jmax. до 0. В катушке связи возникает ЭДС, приложенная "-" к сетке, лампа закрыта. Далее процесс повторяется. Таким образом, за период лампа дважды бывает открыта, в это время и происходит пополнение энергии контура и в нем возникают незатухающие электромагнитные колебания. Лампа с катушкой обратной связи играет роль своеобразного ключа, только в определенные моменты, открывающего доступ энергии от источника питания к контуру, они играют роль механизма обратной связи. В генераторах, используемых в медицинских целях, к контуру генератора индуктивно подключается терапевтический контур. В нем возникают вынужденные колебания, частота которых определяется контуром автогенератора. Терапевтический контур и контур автогенератора настроены в резонанс. Описанный генератор используется в следующих методах высокочастотной терапии: диатермия, индуктотермия, УВЧ-терапия, микроволновая и ДВЦ-терапия.
Диатермия — это метод воздействия на ткани организма высокочастотного электрического тока. Способ воздействия контактный. Частота колебаний 1-2 МГц (в России - 1,625 МГц).
Эффект - тепловой, механизм выделения тепла связан с увеличением колебательного движения ионов в проводящих тканях организма при пропускании высокочастотного тока. Количество выделенного тепла определяется по формуле
Q = kσ2/γ
где k - коэффициент пропорциональности, зависящий от выбора единиц, σ = J / S — плотность тока на электродах, γ - удельная проводимость ткани. Так как количество теплоты обратно пропорционально удельной проводимости, наибольший тепловой эффект происходит в плохо проводящих тканях (подкожный жировой слой, клетчатка, некоторые соединительные ткани). Теплообразование можно значительно усилить, если сделать площадь одного или обоих электродов очень малой. В этом случае под электродом ткань разрушается (разрезается). Этот эффект используется в методе хирургической диатермии. При "электрическом" разрезе одновременно происходит коагуляция кровеносных сосудов, поэтому метод хирургической диатермии называют диатермокоагуляция. Воздействие на ткани организма переменным высокочастотным магнитным полем называется индуктотермией.
Катушка LB в зависимости от области воздействия может иметь различную форму и размеры. Магнитное поле, создаваемое в этой катушке наводит в проводящих тканях организма высокочастотные замкнутые вихревые токи. Эти токи и вызывают эффект теплообразования. Количество выделенной теплоты определяется формулой Q = kv2B2γ . Этот метод лечения используется для воздействия на хорошо проводящие ткани (мышечная, нервная ткань, кровеносные сосуды). При индуктотермии используется частота 10 - 15 МГц.
При УВЧ - терапии происходит воздействие переменным высокочастотным электрическим полем, частотой 40 - 50 МГц.
При воздействии такого поля в проводящих тканях усиливается колебательное движение ионов, в непроводящих - вращательное движение дипольных молекул, в результате чего выделяется теплота. Формулы теплообразования:
- для проводящих тканей: Q = kЕ2γ , Е - напряженность электрического поля,
- для диэлектрических тканей: Q = kvεε0E2tg δ , ε 0 - диэлектрическая постоянная, ε - относительная диэлектрическая проницаемость, v - частота, δ - так называемый угол потерь, он определяет отставание по фазе вращения дипольных молекул от изменения электрического поля.
В микроволновой и ДЦВ-терапии используется открытый колебательный контур. В простейшем виде это обычный прямой проводник (антенна). Такой контур способен излучать направленный поток электромагнитных волн.
Используемая частота 460 МГц , 2375 МГц. Эффект воздействия тепловой. Способ воздействия бесконтактный.
В современной физиотерапии все большее значение приобретает применение импульсных токов. Импульсы прямоугольной формы получают с помощью импульсных генераторов — мультивибраторов.
Он состоит из двух одинаковых триодов. За счет обратной связи анодов с сетками противоположных триодов, ток в этих триодах "мгновенно" увеличивается до Jmax, а затем также быстро уменьшается до 0. Импульсы прямоугольной формы возникают на обоих триодах, но они противофазны.
Основными характеристиками импульсных токов являются:
а. Амплитуда тока - А,
б. Период импульса - Т,
в. Длительность импульса - t,
г. Частота повторения импульсов - v = 1/Т,
д. Длительность паузы между импульсами - t0,
е. Скважность — это отношение периода импульса к его длительности
∆ = T/t
Для получения импульсов других форм используются дифференцирующие и интегрирующие цепочки. Это последовательно соединенные конденсатор и активное сопротивление. Цепочки характеризуются
постоянной τ = R С. Величина этой константы и определяет форму импульса. Физиологический эффект воздействия импульсов тока состоит в том, что на каждый отдельный импульс ткань отвечает адекватным ответом (раздражением). Для каждой ткани в координатах амплитуда — длительность импульса определяют границу раздражения.
Выше кривой существует адекватный ответ, ниже ткань не раздражается. С этой точки зрения существуют физиологические параметры раздражения:
1. Реобаза (Аm) - это минимальная амплитуда импульса при бесконечно большой его длительности, которая вызывает адекватный ответ.
2. Хроноксия (tm) - это минимальная длительность импульса при двойной реобазе, которая вызывает адекватный ответ.
3. Лабильность (vmin) - это минимальная частота импульсов, на каждый из которых ткань отвечает адекватным ответом. Выше этой частоты (так называемый гладкий тетанус) ткань "не успевает" расслабится и находится в постоянном раздражении.
4. Адаптация (S) - связана со временем нарастания переднего фронта импульсов (крутизны). При некоторой достаточно малой крутизне ткань не отвечает адекватным ответом, хотя реобаза, хроноксия и лабильность соответствует граничной.
Врачу необходимо знать физические параметры импульсов возбудимости для грамотного и эффективного использования их для лечения заболеваний.
Электростимуляция импульсными токами используется:
1. Для компенсации временно утраченной функции (например, при потере электровозбудимости мышцы в результате травмы).
2. Для усиления функции (например, при значительной утрате функции сокращения миокарда больному "вшивают" генератор прямоугольных импульсов — стимулятор сердечной деятельности).
3. В некоторых случаях стимуляция используется при полной утрате функции.
4. Для подавления функции (аппарат электросон, электроанальгезия родов и др.).
Магнитотерапия - это воздействие на ткани организма постоянным или переменным низкочастотным магнитным полем (МП). Для этих целей используются постоянные магниты (магни-тоэлласты) и соленоиды (катушки индуктивности), на которые подается постоянное или переменное, порядка 50 Гц, электрическое напряжение. Механизм размена энергии магнитного поля (первичный эффект) далеко не выяснен. Однако благодаря усилиям медиков и магнитобиологов в последние годы выявлены многие физиологические эффекты при действии магнитного поля на биообъекты. Магнитное поле действует на парамагнитные элементы тканей, такие как О, Fe, Mn, которые участвуют в окислительных реакциях, что ведет к улучшению обменных процессов. Значительно усиливаются ионизационные процессы в МП, усиливается движение заряженных частиц и силы трения о клеточную мембрану, что повышает проницаемость ее, усиливает внутриклеточный и межклеточный обмен. Обнаружено также, что магнитотерапия обладает ярко выраженным противовоспалительным, анальгезирующим и противоотечным действием, способствует улучшению трофики, ускорению процессов регенерации тканей, эпитализации язвенных поверхностей, более быстрому заживлению ран. Действие МП ведет к увеличению количества функционирующих капилляров, кровонаполнению, ускорению тканевого кровотока, улучшению насыщения артериальной крови кислородом и т. д. В результате исследования последних лет обнаружено, что главным в механизме действия МП на молекулярном уровне является блок: белок — ионное окружение — вода, на тканевом и органном уровне основной точкой воздействия является микро-циркуляторное русло.
Метод лечебного воздействия постоянным током небольшой величины (напряжение 60—80 В) носит название гальванизация. Первичное действие постоянного тока на ткани организма связано с перераспределением ионов на полупроницаемых и не проницаемых тканевых перегородках — это явление называют поляризацией. Перераспределение ионов приводит к функциональным сдвигам в различных элементах тканей. Аппарат для гальванизации представляет собой двухполупериодный выпрямитель 1 со сглаживающим фильтром 2 и регулирующе- регистрирующей частью 3.
При проведении процедуры, во избежание прижигающего действия продуктами электролиза и лучшего контакта с кожей, под электроды помещают марлевые прокладки, смоченные физраствором. Оптимальный ток для проведения процедуры определяется только по ощущению пациента - легкое покалывание под электродами. Одновременно с гальванизацией часто используют введение лекарственных и питательных веществ в организм (ионы йода, металлы, пенициллин и др.) в ионном виде. Этот метод называют ионогальванизацией или лечебным электрофорезом. Препарат вводится с электрода, знак которого имеют вводимые ионы: с катода - катионы, с анода анионы.
Воздействие ультразвуком частотой 880 кГц и 2640 кГц называется ультразвуковой терапией. Воздействие осуществляется через специальные звукопроводящие пасты. В современных УЗ-аппаратах
интенсивность меняется в пределах (0,1 - 1,6) Вт / см2. Различают три вида первичных эффектов при действии ультразвука на живые ткани: механический, тепловой, химический. Механическое действие обусловлено колебанием частиц ткани (микромассаж). При этом происходит изменение взаимного расположения клеточных структур, что приводит к изменению их функций. Тепловое действие связано с поглощением УЗ - энергии в мышечных и особенно костных тканях, в первую очередь, при кавитационных явлениях. Химическое действие проявляется в изменении интенсивности окислительных процессов, усилении диффузии и др. Отдельное место среди лечебных методов занимают физические явления, возникающие в газах и газовых смесях. Всем известно, что в обычных условиях атомы и молекулы газов являются нейтральными, не заряженными. Превращение нейтральных атомов в заряженные частицы осуществляется под действием физико-химических факторов, таких как реакция горения, электрические разряды, различного вида излучения. Ионизационный эффект определяется:
1. Свойствами самих атомов, так называемой энергией ионизации. Эта энергия величина табличная и весьма значительно различается для различных газов.
2. Свойствами излучения - интенсивностью ионизации: количеством пар ионов, возникающих в единице объема газа за единицу времени под действием ионизатора.
В первую очередь рассмотрим процессы, возникающие в окружающей нас газовой среде — атмосферном воздухе. Известно, что в 1см3 воздуха постоянно присутствует около 1000 пар ионов, однако воздух при этих условиях не является проводником, т.к. всего в 1см3 воздуха присутствует 2, 7 1019 атомов и молекул, и 1000 пар ионов образуют слишком слабый ток. Вопрос состоит в том, откуда берутся эти ионы? Выявлено, что на молекулы воздуха постоянно действуют два вида физических факторов, так называемые постоянно действующие ионизаторы.
1. В почве, воздухе, воде всегда присутствуют радиоактивные элементы, излучения которых в виде α, β, γ, - излучений и создают ионы воздуха. Интенсивность ионизации радиоактивного излучения 8 пар/ (см3с).
2. Космические лучи. Первичные космические лучи это частицы с огромной энергией (порядка 10'°- 1018 эВ), которые "прилетают" к нам из космического пространства. Они взаимодействуют только с атомами верхних слоев атмосферы, разбивая их. В результате такого взаимодействия возникают вторичные космические лучи, которые подразделяются на жесткие и мягкие. К жестким относится: поток промежуточных по массе частиц - мезонов, к мягким - электроны, γ - фотоны. Вторичные космические лучи достигают поверхности земли и создают 2 пары ионов/ (см3с). Таким образом, постоянно действующие ионизаторы создают 10 пар ионов в 1см3 воздуха за 1 с. В воздухе как и в любом газе существует и обратный процесс - рекомбинация. При достижении около 1000 пар ионов в 1см3 процессы ионизации и рекомбинации уравниваются. Что же из себя представляют ионы воздуха или, как их называют, аэроионы? Различают легкие и тяжелые аэроионы. Легкие аэроионы это мелкие заряженные частицы воздуха (ионы, частицы воды), окруженные полярными молекулами воздуха. Тяжелые аэроионы это частицы дыма, пыли, на которые осаждаются легкие аэроионы. И легкие и тяжелые аэроионы, могут быть как положительными так и отрицательными. Тяжелые аэроионы оказывают отрицательное действие на организм. Из легких лечебное действие оказывают только легкие отрицательные аэроионы. Для характеристики здоровости атмосферного воздуха вводится специальная величина - коэффициент униполярности.
k = n+/n-
где n+ - концентрация легких положительных аэроионов, n- — концентрация легких отрицательных аэроионов. В чистом загородном воздухе k = 1-1,2, у фонтанов, водопадов, у моря k < 1, в пещерах, подземельях, в плохо проветриваемых помещениях к достигает 10—20.
Метод воздействия легкими отрицательными аэроионами с лечебными целями называют аэроионотерапией.
Аэроионы получают искусственным путем в основном 3 способами.
1.Чистый сухой воздух продувают через аэродинамическую трубу. В начале трубы находится радиоактивный препарат, излучение которого активно ионизирует воздух. Легкие положительные аэроионы "убираются" отрицательно заряженным цилиндром. На выходе трубы создается поток воздуха, активизированный легкими отрицательными аэроионами.
2.Получение аэроионов возможно при механическом дроблении воды, так называемый баллоэлектрический эффект, который состоит в том, что капли воды при ударе о неподвижную преграду делятся на крупные, заряженные положительно, они опускаются на поверхность жидкости и мелкие, заряженные отрицательно, они находятся во взвешенном состоянии в воздухе и представляют собой легкие отрицательные эроионы. Прибор для этих целей называется гидроаэроионизатор.
3. Третий способ основан на электроэффлювивальном эффекте - это образование аэроионов в электрическом поле большой напряженности (свыше 20000 В/см). Получить такое поле можно на острие металлического проводника - кондуктора. Под действием этого поля те тысяча пар ионов, которые постоянно находятся в 1 см3 воздуха, начинают двигаться с такой скоростью, что при столкновении с нейтральными атомами, ионизируют их. Процесс образования новых ионов идет быстро (лавинио). Положительные ионы двигаются к острию и, подходя к нему, нейтрализуются. Происходит явление "стекания зарядов" с острия. Отрицательные ионы двигаются от острия, захватывая и нейтральные молекулы воздуха, образуется "электрический ветер". Весь описанный процесс называется тихий коронный разряд. На этом принципе разработан медицинский аппарат электростатический душ. За счет повышающего трансформатора (ТР) и выпрямителя (D) между головным и ножным электродами создается постоянное напряжение (30-60) кВ. Головной электрод выполнен в виде тонких стержней с острием, на которых образуются легкие отрицательные аэроионы. Сопротивление R служит для безопасности пациента от поражения током. Кроме аэроионов в электростатическом душе на организм пациента действует электрическое поле высокой напряженности, которое вызывает явление поляризации в диэлектрических тканях и микротоки в проводящих тканях. Этот метод многие называют франклинизация. Первичный эффект действия легких отрицательных аэроионов состоит в раздражающем (тонизирующем) действии на рецепторы кожи и слизистых. Во всех лечебных учреждениях широко используется ртутно - кварцевая лампа (среди медицинских работников она называется "кварц", "УФО", бактерицидная лампа). Лампа представляет собой трубку из кварцевого стекла, в которую впаяны два электрода.
Трубка заполнена аргоном и содержит небольшое количество ртути. Питается трубка от сети переменного напряжения. Катушка L и конденсатор С служат для облегчения зажигания лампы (явление резонанса напряжения). В начальный момент после подключения напряжения между электродами возникает тлеющий разряд в атмосфере аргона. Он начинается засчет единичных ионов и электронов и поддерживается за счет ударной ионизации атомов аргона. Затем за счет бомбардировки ионами разогреваются электроды, повышается температура трубки, ртуть начинает испаряться. В трубке возникает мощный электрический разряд, происходит ударная ионизация атомов паров ртути. Ионизированные атомы ртути создают излучение в ультрафиолетовой области и частично синефиолетовой части спектра. Спектр излучения линейчатый. Частота излучения зависит от давления парогазовой смеси внутри трубки. В трубках высокого давления (150 - 400) мм. рт. ст. длина волны УФ излучения 365 нм. Это излучение используется как лечебное средство и средство укрепления и закаливания организма. В трубках низкого давления (0,01 - 1) мм. рт. ст. длина волны 253,7 нм. Такие трубки используются как бактерицидные лампы для уничтожения бактерий, грибков, вредных микроорганизмов, а также в хирургических, стоматологических кабинетах, перевязочных и т.д.
- Колебания, волны, звук
- Физические основы гемодинамики
- Физический смысл градиента скорости:
- Величина градиента давления зависит:
- Моделирование. Механическая и электрическая модели кровообращения
- Методы определения скорости кровотока
- Способы измерения давления крови
- Медицинская электроника
- Диагностические электронные системы
- Классификация усми
- Геометрическая оптика. Фотометрия. Фотоэффект
- Законы отражения
- I закон: Луч падающий, перпендикуляр, восстановленный к границе раздела двух сред в точке падения, и луч отраженный лежат в одной плоскости.
- Законы преломления
- I закон: Луч падающий, перпендикуляр, восстановленный к границе раздела двух сред в точке падения, и преломленный луч лежат в одной плоскости.
- I I закон: Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред и называется показателем преломления второй среды относительно первой:
- Микроскоп
- Оптическая система глаза
- Недостатки оптической системы глаза и их устранение
- Фотометрия. Фотоэффект
- Первый закон освещенности:
- Второй закон освещенности:
- Фотоэффект
- I закон: Фототок насыщения j (т.Е. Максимальное число электронов, освобождаемых светом в 1с) прямо пропорционален световому потоку ф.
- II закон: Скорость фотоэлектронов пропорционально возрастает с увеличением частоты падающего света и не зависит от его интенсивности.
- Волновая оптика
- Разрешающая способность оптических систем
- Способы уменьшения предела разрешения
- Электронный микроскоп
- Поляризация света
- Свойства обыкновенного и необыкновенного лучей
- Способы получения поляризованного света.
- Механизм оптического излучения. Оптические квантовые генераторы
- Факторы действия:
- Эффект биологического действия лучей лазера зависит:
- Рентгеновское излучение
- При этом могут возникнуть три случая взаимодействия.
- Ядро атома. Радиоактивность
- Основные свойства ядерных сил:
- Дозиметрия ионизирующего излучения
- Материя и движение. Современные взгляды на природу вещества и поля
- Моделирование. Вероятностные методы диагностики
- Моделирование состоит из следующих стадий:
- Медицинская диагностика и возможности её автоматизации
- Вероятностные методы диагностики
- Структурные основы функционирования мембран
- Основные этапы работы атф-азы:
- Электрогенез биопотенциалов
- 1. Диффузный потенциал Δφд.
- 2. Равновесный мембранный потенциал Δφм(р).
- Активно-возбудимые среды
- Биофизика мышечного сокращения
- Активные и пассивные электрические свойства органов и тканей
- Современные методы обработки информации количественные показатели в биологии и медицине
- Элементы теории вероятности
- Распределение Максвелла
- Распределение Больцмана
- Нормальный закон распределения
- Элементы высшей математики
- Производная от функции в данной точке
- Некоторые правила нахождения производных
- Производные второго и высших порядков
- Возрастание и убывание функции
- Дифференциал функции
- Некоторые свойства дифференциала
- Неопределенный интеграл
- Основные свойства неопределенного интеграла
- Основные методы интегрирования
- Определенный интеграл
- Некоторые свойства определенного интеграла
- Техника вычисления определенного интеграла
- Дифференциальные уравнения
- Дифференциальные уравнения с разделенными и разделяющимися переменными
- Задачи на составление дифференциального уравнения
- Кибернетика и информатика
- Основные направления медицинской кибернетики:
- Использование теории информации в биологии и медицине:
- Основы вычислительной техники
- К центральным устройствам относятся:
- Программное обеспечение эвм
- Примеры простейших программ:
- Техника электробезопасности при работе с электронными медицинскими системами
- Классы защиты условной безопасности