Разрешающая способность оптических систем
Явление дифракции объясняет пределы разрешения и разрешающую способность оптических систем, в частности приборов для микроскопии. Объективы современных микроскопов являются сложными оптическими системами, состоящими из нескольких линз. Однако увеличение дает только одна линза, которую называют фронтальной. Обычно, это плосковыпуклая линза, стоящая первой к объекту. Остальные линзы предназначены для коррекции, т.е. устранения недостатков изображения. Увеличение объектива определяется как: Го6= ∆ / Fo6 где ∆ - оптическая длина микроскопа - расстояние между задним фокусом объектива и передним фокусом окуляра. Оптическая сила фронтальной линзы равна: D = (n - 1) / R, где n-показатель преломления вещества, из которого изготовлена линза, R-радиус кривизны поверхности фронтальной линзы.
Тогда Fo6= I/ D = R / (n - 1); Го6= ∆ (n - 1) / R
Анализируя эту формулу, кажется, что, уменьшая радиус фронтальной линзы (R0O), можно получить сколь угодно большое увеличение объектива микроскопа. Однако в действительности, уменьшение радиуса фронтальной линзы, позволяет рассматривать предметы величиной, не меньше некоторого предела, который называют пределом разрешения микроскопа.
Предел разрешения микроскопа (Z) - это наименьшее расстояние между двумя точками объекта, которые еще видны в микроскопе раздельно. Величина, обратная пределу разрешения, называется разрешающей способностью микроскопа.
Разрешающая способность микроскопа - это его возможность давать раздельное изображение двух близко расположенных точек объекта.
Чтобы определить величину предела разрешения, выясним механизм получения изображения в объективе.
В качестве объекта возьмем дифракционную решетку. Рассматривание мелких предметов в микроскопе в проходящем свете, можно уподобить прохождению света через дифракционную решетку. Самой мелкой деталью дифракционной решетки является ее период (d). Свет, проходя решетку, создает картину дифракционных максимумов и минимумов в фокальной плоскости фронтальной линзы, что и является первичным изображением. После этого, лучи интерферируют, создавая в плоскости экрана вторичную картину, т.е. изображение дифракционной решетки.
Немецкий ученый-физик Эрнест Аббе - профессор теоретической физики Иенского университета в 1872 году дал теорию образования изображения в микроскопе. Он установил: Предельным условием получения изображения является то, чтобы в его построении участвовали нулевой и два первых максимума, если свет падает перпендикулярно на предмет, или нулевой и один из первых максимумов, если свет падает под углом.
При дальнейшем увеличении числа дифракционных максимумов, будет улучшаться только четкость и яркость изображения. Чем меньше предмет или его деталь (d), тем больше углы дифракции и тем шире должно быть отверстие объектива. Отверстие объектива определяется углом между лучами, приходящими от предмета к краям фронтальной линзы. Он называется отверстным углом 2U. Половина этого угла называется апертурой U. Если апертура меньше угла дифракции, соответствующего максимумам первого порядка, то изображения предмета не будет, хотя экран станет равномерно освещен лучами нулевого дифракционного максимума. Таким образом, радиус кривизны фронтальной линзы можно увеличивать до тех пор, пока апертура объектива не станет меньше угла дифракции лучей, дающих максимумы первого порядка. Тогда: k = 1, a ~ U, sin U = λ/ d, dmin ≤ λ/ sin U, dmin = Z
Z = λ/sinU
Чем меньше предел разрешения, тем более мелкие детали объекта можно рассматривать в микроскоп, т.е. тем больше будет его разрешающая способность.
- Колебания, волны, звук
- Физические основы гемодинамики
- Физический смысл градиента скорости:
- Величина градиента давления зависит:
- Моделирование. Механическая и электрическая модели кровообращения
- Методы определения скорости кровотока
- Способы измерения давления крови
- Медицинская электроника
- Диагностические электронные системы
- Классификация усми
- Геометрическая оптика. Фотометрия. Фотоэффект
- Законы отражения
- I закон: Луч падающий, перпендикуляр, восстановленный к границе раздела двух сред в точке падения, и луч отраженный лежат в одной плоскости.
- Законы преломления
- I закон: Луч падающий, перпендикуляр, восстановленный к границе раздела двух сред в точке падения, и преломленный луч лежат в одной плоскости.
- I I закон: Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред и называется показателем преломления второй среды относительно первой:
- Микроскоп
- Оптическая система глаза
- Недостатки оптической системы глаза и их устранение
- Фотометрия. Фотоэффект
- Первый закон освещенности:
- Второй закон освещенности:
- Фотоэффект
- I закон: Фототок насыщения j (т.Е. Максимальное число электронов, освобождаемых светом в 1с) прямо пропорционален световому потоку ф.
- II закон: Скорость фотоэлектронов пропорционально возрастает с увеличением частоты падающего света и не зависит от его интенсивности.
- Волновая оптика
- Разрешающая способность оптических систем
- Способы уменьшения предела разрешения
- Электронный микроскоп
- Поляризация света
- Свойства обыкновенного и необыкновенного лучей
- Способы получения поляризованного света.
- Механизм оптического излучения. Оптические квантовые генераторы
- Факторы действия:
- Эффект биологического действия лучей лазера зависит:
- Рентгеновское излучение
- При этом могут возникнуть три случая взаимодействия.
- Ядро атома. Радиоактивность
- Основные свойства ядерных сил:
- Дозиметрия ионизирующего излучения
- Материя и движение. Современные взгляды на природу вещества и поля
- Моделирование. Вероятностные методы диагностики
- Моделирование состоит из следующих стадий:
- Медицинская диагностика и возможности её автоматизации
- Вероятностные методы диагностики
- Структурные основы функционирования мембран
- Основные этапы работы атф-азы:
- Электрогенез биопотенциалов
- 1. Диффузный потенциал Δφд.
- 2. Равновесный мембранный потенциал Δφм(р).
- Активно-возбудимые среды
- Биофизика мышечного сокращения
- Активные и пассивные электрические свойства органов и тканей
- Современные методы обработки информации количественные показатели в биологии и медицине
- Элементы теории вероятности
- Распределение Максвелла
- Распределение Больцмана
- Нормальный закон распределения
- Элементы высшей математики
- Производная от функции в данной точке
- Некоторые правила нахождения производных
- Производные второго и высших порядков
- Возрастание и убывание функции
- Дифференциал функции
- Некоторые свойства дифференциала
- Неопределенный интеграл
- Основные свойства неопределенного интеграла
- Основные методы интегрирования
- Определенный интеграл
- Некоторые свойства определенного интеграла
- Техника вычисления определенного интеграла
- Дифференциальные уравнения
- Дифференциальные уравнения с разделенными и разделяющимися переменными
- Задачи на составление дифференциального уравнения
- Кибернетика и информатика
- Основные направления медицинской кибернетики:
- Использование теории информации в биологии и медицине:
- Основы вычислительной техники
- К центральным устройствам относятся:
- Программное обеспечение эвм
- Примеры простейших программ:
- Техника электробезопасности при работе с электронными медицинскими системами
- Классы защиты условной безопасности