II закон: Скорость фотоэлектронов пропорционально возрастает с увеличением частоты падающего света и не зависит от его интенсивности.
III закон: Независимо от интенсивности света, фотоэффект начинается только при определенной (для данного металла) минимальной частоте света или максимальной длине волны, называемой красной границей фотоэффекта.
Законы внешнего фотоэффекта получают простое истолкование на основе квантовой теории света. По этой теории, величина светового потока определяется числом световых квантов (фотонов), падающих в единицу времени на поверхность металла. Каждый фотон может взаимодействовать только с одним электроном. Поэтому максимальное число фотоэлектронов должно быть пропорционально световому потоку (первый закон фотоэффекта). Энергия фотона hv, поглощенная электроном, частично расходуется на совершение работы выхода электрона из металла А; оставшаяся часть этой энергии идет на сообщение ему кинетической энергии mυ2/2. Тогда, согласно закону сохранения энергии, можно записать:
hv = A + (mυ2)/2
Эта формула, предложенная в 1905 году Эйнштейном и подтвержденная затем многочисленными экспериментами, называется уравнением Эйнштейна. Из этого уравнения непосредственно видно, что скорость фотоэлектрона возрастает с увеличением частоты света и не зависит от его интенсивности (поскольку ни А, ни v не зависят от интенсивности света). Этот вывод соответствует второму закону фотоэффекта. Кроме того, из уравнения Эйнштейна следует, что с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается (величина А постоянна для данного освещаемого металла). При некоторой достаточно малой частоте v = vmin (или длине волны λmax= с / vmin) кинетическая энергия фотоэлектрона станет равной нулю (mυ2)/2= 0 и фотоэффект прекратится (третий закон фотоэффекта). Это будет иметь место при hvmin = A, т.е. в случае, когда вся энергия фотона расходуется на совершение работы выхода электрона. Тогда: vmin = A/h, или λmax = hc/A
Эти формулы определяют красную границу фотоэффекта и что она зависит от величины работы выхода, т.е. от рода металла. На внешнем фотоэффекте основан важный физико-технический прибор, называемый вакуумным фотоэлементом. Катодом К служит слой металла, нанесенный на внутреннюю поверхность стеклянного баллона, из которого выкачан воздух. Анод А выполнен в виде металлического кольца, помещенного в центральной части баллона. При освещении катода, в цепи фотоэлемента возникает электрический ток за счет электронов, выбитых из катода. Сила тока пропорциональна величине светового потока, падающего на катод. Большинство современных фотоэлементов имеют сурьмяно-цезиевые или кислородно-цезиевые катоды, обладающие высокой фоточувствительностью. Первые чувствительны к видимому и ультрафиолетовому свету, а вторые к инфракрасному и видимому свету. В некоторых случаях, для увеличения чувствительности фотоэлемента, его наполняют аргоном при давлении порядка 10-2 мм.рт.ст. Фототок в таком фотоэлементе усиливается вследствие ионизации аргона, вызванной столкновением фотоэлектронов с атомами аргона. Внутренний фотоэффект наблюдается у полупроводников и, в меньшей мере, у диэлектриков. Полупроводниковая пластинка присоединяется к полюсам батареи. Ток в цепи незначителен, поскольку полупроводник обладает большим сопротивлением. Однако при освещении пластинки ток в цепи резко возрастает. Это обусловлено тем, что свет вырывает электроны из атомов полупроводника, которые, оставаясь внутри полупроводника, увеличивают его электропроводность. Такое сопротивление называют фоторезистор. На явлении внутреннего фотоэффекта основана работа полупроводниковых фотоэлементов. Для их изготовления используют селен, сернистый свинец, сернистый кадмий и некоторые другие полупроводники. Фоточувствительность полупроводниковых фотоэлементов в сотни раз превышает фоточувствительность вакуумных фотоэлементов. Некоторые фотоэлементы обладают отчетливо выраженной спектральной чувствительностью. У селенового фотоэлемента спектральная чувствительность очень близка к спектральной чувствительности человеческого глаза. Недостатком полупроводниковых фотоэлементов является их заметная инерционность: изменение фототока запаздывает относительно изменения освещенности фотоэлемента. Поэтому полупроводниковые фотоэлементы не пригодны для регистрации быстроизменяющихся световых потоков. В качестве примера полупроводникового фотоэлемента рассмотрим устройство селенового вентильного фотоэлемента.
Он состоит из металлической подложки, дырочного полупроводника, покрытого прозрачным слоем металла (обычно тонкий слой золота). На границе металл-полупроводник, вследствие диффузии, возникает контактный запирающий слой с напряженностью Ек. Включим теперь световой поток Ф, проникающий в полупроводник. Благодаря внутреннему фотоэффекту увеличивается концентрация свободных зарядов обоих знаков - электронов и дырок. Электроны свободно диффундируют через контакт, а для дырок он действительно является запирающим слоем. В результате при освещении электроны накапливаются на подложке, а дырки - в полупроводнике. Между контактами А и К возникает разность потенциалов
- фото-э.д.с, величина которой пропорциональна освещенности проводника. Таким образом, вентильный фотоэлемент представляет собой генератор тока, непосредственно преобразующий световую энергию в электрическую. В качестве полупроводников в вентильном фотоэлементе используют селен, закись меди, сернистый таллий, германий, кремний. В вентильном фотоэлементе могут применяться два полупроводника с различными типами проводимости - электронной и дырочной. Весьма перспективным является практическое использование вентильных фотоэлементов в качестве генераторов электроэнергии. Батареи кремниевых фотоэлементов, получивших название солнечных батарей, применяются на космических спутниках и кораблях для питания различной электронной аппаратуры. Некоторые вентильные
фотоэлементы чувствительны к инфракрасному излучению, их применяют для обнаружения нагретых невидимых тел, т.е. как бы расширяют возможности зрения. Исключительно велико значение фотоэлементов для телемеханизации и автоматизации производственных процессов. В сочетании с электронным усилителем и реле, фотоэлемент является неотъемлемой частью автоматических устройств, которые, реагируя на световые сигналы, управляют работой различных промышленных и сельскохозяйственных установок и транспортных механизмов. На внешнем фотоэффекте основана работа электронно-оптического преобразователя (ЭОП), предназначенного для преобразования изображения из одной области спектра в другую, а также для усиления яркости изображений. В медицине ЭОП применяют для усиления яркости рентгеновского изображения, это позволяет значительно уменьшить дозу облучения человека. Если сигнал с ЭОП подать в виде развертки на телевизионную систему, то на экране телевизора можно получить "тепловое" изображение предметов. Части тела, имеющие разные температуры, различаются на экране либо цветом, при цветном изображении, либо светом, если изображение черно-белое. Такая система, называемая тепловизором, используется в термографии.
- Колебания, волны, звук
- Физические основы гемодинамики
- Физический смысл градиента скорости:
- Величина градиента давления зависит:
- Моделирование. Механическая и электрическая модели кровообращения
- Методы определения скорости кровотока
- Способы измерения давления крови
- Медицинская электроника
- Диагностические электронные системы
- Классификация усми
- Геометрическая оптика. Фотометрия. Фотоэффект
- Законы отражения
- I закон: Луч падающий, перпендикуляр, восстановленный к границе раздела двух сред в точке падения, и луч отраженный лежат в одной плоскости.
- Законы преломления
- I закон: Луч падающий, перпендикуляр, восстановленный к границе раздела двух сред в точке падения, и преломленный луч лежат в одной плоскости.
- I I закон: Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред и называется показателем преломления второй среды относительно первой:
- Микроскоп
- Оптическая система глаза
- Недостатки оптической системы глаза и их устранение
- Фотометрия. Фотоэффект
- Первый закон освещенности:
- Второй закон освещенности:
- Фотоэффект
- I закон: Фототок насыщения j (т.Е. Максимальное число электронов, освобождаемых светом в 1с) прямо пропорционален световому потоку ф.
- II закон: Скорость фотоэлектронов пропорционально возрастает с увеличением частоты падающего света и не зависит от его интенсивности.
- Волновая оптика
- Разрешающая способность оптических систем
- Способы уменьшения предела разрешения
- Электронный микроскоп
- Поляризация света
- Свойства обыкновенного и необыкновенного лучей
- Способы получения поляризованного света.
- Механизм оптического излучения. Оптические квантовые генераторы
- Факторы действия:
- Эффект биологического действия лучей лазера зависит:
- Рентгеновское излучение
- При этом могут возникнуть три случая взаимодействия.
- Ядро атома. Радиоактивность
- Основные свойства ядерных сил:
- Дозиметрия ионизирующего излучения
- Материя и движение. Современные взгляды на природу вещества и поля
- Моделирование. Вероятностные методы диагностики
- Моделирование состоит из следующих стадий:
- Медицинская диагностика и возможности её автоматизации
- Вероятностные методы диагностики
- Структурные основы функционирования мембран
- Основные этапы работы атф-азы:
- Электрогенез биопотенциалов
- 1. Диффузный потенциал Δφд.
- 2. Равновесный мембранный потенциал Δφм(р).
- Активно-возбудимые среды
- Биофизика мышечного сокращения
- Активные и пассивные электрические свойства органов и тканей
- Современные методы обработки информации количественные показатели в биологии и медицине
- Элементы теории вероятности
- Распределение Максвелла
- Распределение Больцмана
- Нормальный закон распределения
- Элементы высшей математики
- Производная от функции в данной точке
- Некоторые правила нахождения производных
- Производные второго и высших порядков
- Возрастание и убывание функции
- Дифференциал функции
- Некоторые свойства дифференциала
- Неопределенный интеграл
- Основные свойства неопределенного интеграла
- Основные методы интегрирования
- Определенный интеграл
- Некоторые свойства определенного интеграла
- Техника вычисления определенного интеграла
- Дифференциальные уравнения
- Дифференциальные уравнения с разделенными и разделяющимися переменными
- Задачи на составление дифференциального уравнения
- Кибернетика и информатика
- Основные направления медицинской кибернетики:
- Использование теории информации в биологии и медицине:
- Основы вычислительной техники
- К центральным устройствам относятся:
- Программное обеспечение эвм
- Примеры простейших программ:
- Техника электробезопасности при работе с электронными медицинскими системами
- Классы защиты условной безопасности