Влияние генов на развитие признаков
Проявление действия генов на биохимическом уровне начали изучать в 1935 г. Билл и Эфрусси с исследований двух рецессивных мутаций окраски глаз у дрозофилы по генам vermilion (яркие глаза) и cinnabar (киноварные глаза). У особей, гомозиготных по этим генам, не образуется пигмент, определяющий нормальную окраску глаз. В результате глаза отличаются от особей дикого типа. Сложные глаза дрозофилы развиваются из зачатка или диска, образование которого происходит на стадии личинки. Глазной имагинальный диск можно пересадить в полость тела другой личинки, где он продолжит свое развитие. Билл и Эфрусси произвели имплантацию эмбриональной ткани дисков глаз из личинок мух с мутантными генами vermilion и cinnabar в личинки нормальных мух-дрозофил и установили, что после метаморфозы этих личинок в зрелых мух имплантированная ткань глаза развилась в дополнительные глаза нормальной окраски. Отсюда был сделан вывод, что в тканях мутантных мух не хватало какого-то вещества для синтеза нормальной окраски глаз.
На основании опытов Билл и Эфрусси пришли к выводу, что образование пигмента идет по пути: предшественник — вещество I— вещество II — пигмент. У мутанта по гену vermilion блокирована реакция, в результате которой предшественник преобразуется в вещество I, а у мух с мутацией cinnabar блокирована реакция, в результате которой вещество I преобразуется в вещество И. В последующие годы было установлено, что вещество I (V+) является кинуренином и мутация V блокирует его образование из триптофана. Вещество II (Сп+) оказалось хромогеном — продуктом Превращения кинуренина. Мутация Сп блокировала стадию образования кинуренина хромогена — предшественника пигмента дикого типа. Исследования показали, что мутации в' генах, кодирующих определенные ферменты, ведут к блокированию биохимических реакций, нарушая превращение определенных веществ, что влияет на образование признака — окраски глаз.
В 1940 г. Билл и Татум избрали для своих исследований новый объект — гриб хлебной плесени нейроспору. У нейроспо-ры в результате последовательной цепи реакций из фенилалани-на синтезируется никотиновая кислота. Было обнаружено шесть мутаций, нарушающих нормальный ход ее синтеза. При помощи культивирования на минимальной среде и добавлении веществ, синтез которых был прерван мутацией, были установлены промежуточные продукты и порядок их образования при синтезе никотиновой кислоты:
фенилаланин i> антраниловая кислота i> индол (+ серия) i>
триптофан i> кинуренин i> оксиантраниловая кислота i> никотиновая кислота.
Генетическое блокирование может происходить на любом из шести этапов, для каждого из которых нужен определенный фермент. Если у штамма нейроспоры произошла мутация на второй стадии, то процесс синтеза заканчивался на образовании антраниловой кислоты и шел дальше, если в среду вводили индол, синтез которого был прерван мутацией. Если мутация произошла на пятой стадии, то синтез обрывался на образовании кинуренина и продолжался только при добавлении в среду окси-антраниловой кислоты.
На основании полученных фактов Билл и Татум предложили теорию: один ген — один фермент — один признак. По этой теории каждый ген имеет только одну первичную функцию — определять синтез только одного фермента. Изменение в структуре гена, кодирующего определенный фермент, ведет к его выключению. Если этот фермент не участвует в последовательной цепи реакции, то синтез определенного вещества в организме приостанавливается на стадии, для которой этот фермент был необходим. При этом возникает новый признак.
Впервые связь между генами и ферментами у человека обнаружил Гаррод в 1902 г. При анализе родословных больных аль-каптонурией он пришел к заключению, что эта болезнь связана с обменом веществ и передается по наследству. Однако открытие Гаррода было оценено только через много лет, когда было установлено, что целый ряд болезней у человека обусловлен наследственными пороками метаболизма. При изучении фенилаланин-тирозинового обмена у человека было выявлено несколько заболеваний, связанных с нарушением превращения фенилаланина до конечных веществ биосинтеза (рис. 38). Нарушения связаны с мутацией генов, кодирующих ферменты, принимающие участие на разных этапах метаболизма. Фенилкетонурия возникает в том случае, когда блокируется превращение фенилаланина в тирозин. Это ведет к увеличению фенилаланина в плазме крови, спинномозговой жидкости и в моче. Исследования показали, что у
Рис. 38. Схема фенилаланннтирозинового обмена у человека:
/ — фенилкетонурия (избыток фениллланпна): 2 — альбинизм; 3— тнрокетон>рня. 4— аль-каптонурия (черный пигмент в моче)
большинства больных детей умственное развитие отстает на 70 % и более. При альбинизме потеряна способность к образованию меланина. Кретинизм возникает при нарушении в превращениях тирозина. Заболевание сопровождается задержкой развития и умственной отсталостью.
Заболевание тирозинозом связано с мутацией гена, кодирующего фермент, катализирующий образование гомогентизиновой кислоты. При заболевании алькаптонурией наблюдается нарушение синтеза фермента оксидазы, что ведет к накоплению гомогентизиновой кислоты. Моча больных алькаптонурией на воздухе приобретает темную, почти черную окраску. На примере фе-нилаланинтирозинового обмена мы видим, как одно и то же исходное вещество (фенилаланин) под влиянием ферментов — продуктов разных генов, претерпевает превращения в разных направлениях, определяя в конечном итоге разные биохимические признаки. У низших организмов путь от гена до признака сравнительно короткий. У них наследственные признаки определяются 'йнами, которые сосредоточены в одной клетке, и активность генов регулируется продуктами метаболизма этой же клетки. У подавляющего большинства многоклеточных организмов путь от гена до признака значительно сложнее и менее изучен. Целый ряд исследований показывает, что характер индивидуального развития высших организмов определяется взаимодействием многих генов, сложным взаимодействием ядра и цитоплазмы, взаимодействиями различных клеточных систем, обладающих активностью разных генов.
- Лекция-1
- Глава 1 предмет, методы и значение генетики
- Лекция-2
- Цитологические
- Основы наследственности.
- План: Роль ядра и цитоплазмы в наследственности
- Роль ядра и цитоплазмы в наследственности
- Морфологическое строение хромосом
- Лекция-3 кариотип и его видовые особенности
- 1. Диплоидные наборы хромосом у сельскохозяйственных и некоторых видов домашних, прирученных и лабораторных животных
- Гаметогенез и мейоз
- Лекция-4 закономерности наследования признаков при половом размножении
- Особенности гибридологического метода менделя
- Закон единообразия гибридов первого поколения
- Закон расщепления
- Лекция-5 аллели. Множественный аллелизм
- Анализирующее скрещивание. Правило чистоты гамет
- Отклонения от ожидаемого расщепления, связанные с характером доминирования признака и летальными генами
- Лекция-6 закон независимого наследования признаков.
- 2. Вывод формулы расщепления по генотипу при дигибридном
- Полигибридное скрещивание
- 3. Количество фенотипов и генотипов в f2 при скрещивании родителей,
- Лекция-7 хромосомная теория наследственности
- Полное сцепление
- Неполное сцепление
- Лекция-8 соматический (митотический) кроссинговер.
- Карты хромосом
- Лекция-9 генетика пола.
- 5. Зависимость пола дрозофилы от отношения числа х-хромосом к числу наборов аутосом (Бриджес, 1932)
- 6. Нарушения в системе половых хромосом и их фенотипическое проявление
- Наследование признаков, ограниченных полом
- Проблема регуляции пола
- Лекция-11 молекулярные основы наследственности.
- Доказательства роли днк в наследственности
- Биологическая роль нуклеиновых кислот
- Химический состав и структура нуклеиновых кислот.
- Генетический код
- Лекция-13 генетика микроорганизмов.
- Строение и размножение бактерий
- Строение и размножение вирусов
- Взаимодействие фага с бактериальной клеткой
- Понятие о генотипе и фенотипе микроорганизмов
- Конъюгация
- Трансдукция
- Трансформация
- Лекция-14
- Генная инженерия
- Клеточная инженерия
- Гибридомная технология получения моноклональных антител
- Лекция-15 эмбриогенетическая инженерия.
- Клонирование эмбрионов млекопитающих
- Химерные животные
- Трансгенные животные
- Лекция-30
- Изменчивость и методы ее изучения
- Виды изменчивости
- Методы изучения изменчивости
- Вариационный ряд и его построение
- 9. Распределение сухостойных хорош черно-пестрой породы
- Статистические показатели для характеристики совокупности
- 10. Определение основных статистических величин способом
- Вычисление статистических показателей для малых выборок
- 12. Статистические показатели суммарного эффекта фагоцитоза
- Оценка достоверности разности между средними арифметическими двух выборочных совокупностей
- Типы распределения
- Пуассона
- Критерий хи-квадрат (х2)
- 16. Соответствие фактического распределения семейств теоретически ожидаемому (биномиальному)
- 18. Стандартные значения критерия %
- Изучение связи между признаками
- 20. Определение г для малых выборок
- Дисперсионный анализ
- Лекция-16 мутационная изменчивость.
- Классификация мутаций
- Хромосомные мутации
- Механизм образования числовых и структурных аномалий кариотипа
- Генные мутации
- Лекция-17 индуцированный мутагенез.
- Генетические последствия загрязнения окружающей среды и защита животных от мутагенов
- Антимутагены
- Лекция-18
- Раскрытие сложной структуры гена
- Влияние генов на развитие признаков
- Дифференциальная активность генов на разных этапах онтогенеза
- Взаимодействие ядра и цитоплазмы в развитии
- Регуляция синтеза иРнк и белка
- Влияние среды на развитие признаков
- Генетика популяций
- Популяция и «чистая линия»
- Структура свободно размножающейся популяции. Закон харди - вайнберга
- Основные факторы генетической эволюции в популяциях
- Влияние инбридинга на выщепление рецессивных летальных и полулетальных генов
- 31. Формы уродств в потомстве быка Бурхана 6083
- Генетический груз в популяциях животных
- Генетическая адаптация и генетический гомеостаз популяций
- Генетические основы гетерозиса
- Лекция-20
- Глава 13 группы крови и биохимический полиморфизм
- 32. Системы генетических групп крови
- Наследование групп крови
- 33. Уточнение отцовства по группам крови
- Биохимический полиморфизм
- 34. Некоторые биохимические полиморфные системы
- Лекция-18
- Генетические основы иммунитета
- Структура иммуноглобулинов
- Генетика иммуноглобулинов
- Лекция-19 генетический контроль иммунного ответа
- Главный комплекс гистосовмести мости (мнс)
- Связь мне и других антигенов гистосовместимости с болезнями
- 38. Взаимосвязь аллелей комплекса в с заболеваемостью кур md, % (по Hansen и др.)
- Первичные (врожденные) дефекты иммунной системы
- Лекция-24
- Генетические аномалии у сельскохозяйственных животных
- Генетические аномалии
- Наследственно-средовые аномалии
- Генетический анализ в изучении этиологии врожденных аномалий
- Простой аутосомный рецессивный тип наследования
- Лекция-25 аутосомный доминантный тип наследования
- Сцепленный с х-хромосомой тип наследования
- 42. Сцепленный с х-хромосомой тип наследования
- Мультифакториальное наследование
- Аномалии у сельскохозяйственных животных, обусловленные мутациями генов
- 43. Список генетически обусловленных аномалий у крупного рогатого скота
- 46. Список генетически обусловленных аномалий у овец
- 47. Наследственные дефекты, встречающиеся
- Распространение аномалий хромосом в популяциях животных
- Числовые и структурные мутации кариотипа и фенотипические аномалии животных
- 48. Типы центрических слияний (транслокаций)
- 50. Продолжительность сервис-периода
- 52. Срввнение снижения воспроизводительной способности
- 54. Хромосомные аберрации в разных линиях кур (по Блому, 1974)
- Лекция-26
- Глава 16 болезни с наследственной предрасположенностью
- Генетическая устойчивость и восприимчивость к бактериальным болезням
- Генетическая устойчивость и восприимчивость к гельминтозам
- Генетическая устойчивость и восприимчивость к протозоозам
- Генетическая устойчивость и восприимчивость к клещам
- Генетическая обусловленность респираторных болезней
- Лекция-27 генетическая обусловленность болезней желудочно-кишечного тракта
- Болезни обмена веществ
- Роль наследственности в предрасположенности животных к болезням конечностей
- 74. Чвстотв болезней и деформация копыт у коров различного происхождения, % (по Косолвпикову)
- Роль наследственности в предрасположенности к бесплодию
- Роль наследственности в предрасположенности к стрессу
- Влияние факторов среды на устойчивость к болезням
- Лекция-28
- Учет врожденных аномалий и болезней. Методы генетического анализа
- Повышение наследственной устойчивости животных к болезням
- Оценка генофонда пород
- Наследуемость и повторяемость устойчивости к заболеваниям
- 80. Коэффициент наследуемости устойчивости (%) к некоторым болезням
- Массовый отбор на резистентность
- Комплексная оценка генофонда семейств, линий и потомства производителей
- Лекция-29 показатели отбора при селекции на устойчивость к болезням
- Селекция животных на устойчивость к болезням
- Непрямая селекция на резистентность
- Импульсно-циклический способ разведения по линиям
- Мероприятия по повышению устойчивости к болезням
- Словарь терминов
- Глава 2. Цитологические осоты наследственности. А. И. Жмгачев 9
- Глава 4. Хромосомная теория наследственности. Г. А. Назарова 51
- Глава 6. Молекулярные основы наследственности. Г. А. Назарова .... 74
- Глава 7. Генетика микроорганизмов. Г. А. Назарова 91
- Глава 8. Биотехнология. Г. А. Назарова, в. Л. Петухов 103
- Глава 11. Генетические основы онтогенеза. Г. А. Назарова 178
- Глава 12. Генетика популяций. А. И. Жнгачев 196
- Глава 14. Генетические основы иммунитета. В. Л. Лопухов 228