Лекция-17 индуцированный мутагенез.
План: ПРОБЛЕМЫ ЭКОЛОГИЧЕСКОЙ ГЕНЕТИКИ ЖИВОТНЫХ.
ГЕНЕТИЧЕСКИЕ ПОСЛЕДСТВИЯ ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ И ЗАЩИТА ЖИВОТНЫХ ОТ МУТАГЕНОВ.
АНТИМУТАГЕНЫ.
Раньше считали, что мутации возникают только под действием внутренних факторов (внутренней среды организма), имеющих место при синтезе ДНК, репродукции хромосом, делении клеток. Ошибки, или «опечатки», в строении генетического материала, казалось бы, не зависели от условий внешней среды. Действительно, первые попытки вызвать мутацию искусственно были безуспешными. Однако уже в 1925 г. Г. А. Надсон и Г. С. Филиппов наблюдали широкий спектр мутаций у грибов, вызванных воздействием лучами радия.
Широкий интерес у биологов вызвали сообщения Г. Меллера (1927), обнаружившего мутационное действие рентгеновых лучей у дрозофилы. В дальнейшем у нее при облучении стали получать самые разнообразные мутации, что способствовало изучению строения генетического материала, взаимодействия мутантных генов и др. В начале 30-х годов В. В. Сахаров, М. Е. Лобашов открыли мутагенное действие отдельных химических веществ. И. А. Рапопорт в России и Ш. Ауэрбах в Англии обнаружили химические соединения с сильным мутагенным действием. В ряде работ, начало которых, очевидно, положено С. М. Гершензоном, открывшим мутагенный эффект при включении экзогенной ДНК в геном дрозофилы, показана возможность индуцирования генных и хромосомных мутаций у животных биологическими агентами, среди которых вирусы, бактерии и другие объекты.
Роль репарируюших систем в мутационном процессе. Повреждения в ДНК, возникающие спонтанно или индуцированно, не всегда реализуются в виде мутаций. Часть из них устраняется или исправляется с помощью специальных репарируюших ферментов, содержащихся в клетках. Известно несколько основных механизмов репарации:
фоторепарация (фотореактивация). Процесс протекает под влиянием видимого света и фотореактивирующего фермента;
репарация в молекуле ДНК путем механизма «вырезание — застройка» (темновая репарация);
эксцизионная (пререпликативная) репарация;
репарация однонитевых разрывов в ДНК при действии лигаз;
пострепликативная, или рекомбинационная, репарация.
Наиболее изучены первые два механизма репарации. Так, механизм фоторепарации заключается в устранении видимым светом димеров тимина, часто возникающих под действием ультрафиолетовых лучей. Это происходит с помощью особого фотореактивирующего фермента. Видимый свет активирует молекулу фермента, она отделяется от димера тимина и разъединяет его на два отдельных тимина. Так восстанавливается нормальная структура ДНК.
Темновая репарация протекает с помощью нескольких ферментов, под действием которых последовательно происходят надрезание, выщепление, расширение бреши, репаративная репликация и сшивание концов молекулы ДНК (рис. 37). Эти два механизма репарации устраняют дефекты в ДНК в основном до стадии репликации.
Изучен механизм удаления (эксцизии) измененных участков ДНК у мутантов с дефектами систем репарации. Это происходит следующим образом (В. А. Ратнер, 1983):
при утрате основания. Утрата основания может быть вос полнена по комплементарной матрице либо ферментом инверта- зой, либо путем разрыва дефектной цепи (инцизия), вырезания фрагмента репарационной застройки бреши и замыкания связи;
при замене, модификации основания и структурном дефекте.
Рис. 37. Схема темноаой ре-парацни(по В. Н. Сойферу):
л — исходная ДНК; б— поврежденная ДНК; в — репарированная ДНК; /—надрезание; //—вы-щепление; ///—расширение бреши; IV— [сепаративная репликация; V— сшивание концов
Дефект основания и структурный дефект репарируются одинаковыми механизмами: а) одноцепочным разрывом вблизи дефектного фрагмента специфичной эндонуклеа-зой; б) эксцизией дефекта экзонуклеа-зой; в) ■застройкой бреши репарационной ДНК-полимеразой и г) замыканием фосфоди-эфирной связи лига-зой.
Поврежденные, например, ультрафиолетовыми лучами молекулы ДНК могут реплицироваться и производить такие же поврежденные участки ДНК. Однако после репликации количество поврежденных участков ДНК уменьшается вследствие замены их фрагментами, взятыми от неповрежденных молекул.
Процесс пострепликативной репарации выражен не только после облучения ультрафиолетовыми лучами, но и после воздействия химическими мутагенами.
Спонтанные и индуцированные мутации фиксируются в клетках в случаях повреждений в системах репарирующих ферментов. Первичные мутационные повреждения систем репарации и связанных с ними систем репликации и рекомбинации, возникшие в результате ошибок ферментов, получили название ошибок репараций. Этот источник составляет существенную долю спонтанных первичных повреждений. Многие мутагены действуют не прямо на ДНК, а через компоненты систем репарации, репликации и рекомбинации (В.А. Ратнер, 1983).
Установлены генетические различия в активности репарирующих систем ферментов, направленных против разрушающего действия мутагенов.
Однократное действие мутагенов может быть зафиксировано в ряде поколений клеток. Такое явление продленного мутагенеза носит название реплицирующей нестабильности. Причинами генетической нестабильности, по мнению Н. П. Дубинина, могут быть структурные мутации хромосом, действие генов-мутаторов и др.
Естественные механизмы защиты живых организмов от действия мутагенных факторов можно усилить искусственно созданными человеком специальными протекторами, или антимутагенами.
ПРОБЛЕМЫ ЭКОЛОГИЧЕСКОЙ ГЕНЕТИКИ ЖИВОТНЫХ
Открытие явления индуцированного мутагенеза привело к обнаружению целого ряда факторов, веществ и агентов, способных изменять наследственный материал клеток. В соответствии с их природой их подразделяют на три класса мутагенов: физические, химические и биологические.
1. Физические мутагены. Основными мутагенами этого класса являются ионизирующие излучения, ультрафиолетовые лучи и повышенная температура. К группе ионизирующих излучений относят рентгеновы лучи, у-лучи и р-частицы, протоны, нейтроны и другие факторы.
Ионизирующие излучения, проникая в клетки, на своем пути вырывают электроны из молекул, что приводит к образованию положительно заряженных ионов. Освободившиеся электроны присоединяются к другим молекулам, которые становятся отрицательно заряженными. В результате облучения клеток образуются свободные радикалы водорода (Н) и гидроксила (ОН), которые тотчас дают новые соединения, в том числе активный пероксид водорода (Н2О2). Такие превращения в молекулах ДНК и кариотипе в итоге приводят к изменению функций генетического аппарата клеток, аберрациям хромосом и возникновению точковых мутаций. Экспериментально установлено, что частота мутаций, индуцированных ионизирующими излучениями, прямо пропорциональна дозе радиации. Под действием ионизирующих излучений чаще всего возникают структурные перестройки хромосом и реже — генные мутации. Так, при облучении морских свинок и домашних свиней И. Л. Гольдман и С. Фотиева обнаружили различный спектр аберраций хромосом.
Транслокации и инверсии наблюдали в соматических клетках поросят, полученных при осеменении свиноматок облученной спермой. Опыты показывают, что при облучении половых клеток часть их оказывается совсем нежизнеспособной или с умеренными нарушениями. Из последних образуются зиготы, которые обычно скоро отмирают вследствие сильных изменений в генотипе («доминантные летали»).
В опыте Фриса и Странцингера у свиноматок, осемененных облученной спермой при дозе 600 Р, было в среднем 7,7 поросенка, а при дозе 800 Р — 5,4 против 9,7, полученных при осеменении нормальной спермой.
Ионизирующие облучения могут нарушить процессы деления в соматических клетках, вследствие чего возникают нарушения и злокачественные образования. Сильное облучение может вызвать смерть.
Источником радиации могут быть прежде всего излучения, возникающие при взрывах атомных и водородных бомб.
2. Химические мутагены. Это вещества химической природы, способные индуцировать мутации. Выраженными му тагенными свойствами обладают отдельные химические вещест ва, используемые в промышленности и сельском хозяйстве. К наиболее сильным из них относят алкилирующие соединения (диметил- и диэтилсульфат, иприт и его производные, нитрозо- метил и нитрозоэтилмочевину, этилметансульфонат, фотрин, фосфешад)- Мутагенный эффект алкилирующих соединений свя зан с введением в ДНК метиловых, этиловых, пропиловых и других радикалов, в результате чего происходят реакции метили рования, этапирования. Сильно выраженным мутагенным эф фектом обладают аналоги азотистых оснований и нуклеиновых кислот (5-бромурацил, 5-бромдезоксиуридин, 5-фтордезоксиури- дин, 8-азогуанин, аминопурин, кофеин и др.), акридиновые кра сители (акридин желтый и оранжевый, 5-аноакридин, профла- вин и др.), а также азотистая кислота, гидроксиламин, формаль дегид, пероксиды, уретан и т. д.
Мутагенным действием обладают пестициды, гербициды, используемые в агрономии для борьбы с сорными растениями и вредными насекомыми. Мутации могут быть индуцированы минеральными удобрениями, прежде всего нитратами, которые превращаются сначала в нитриты, а затем в активные нитрозо-амины.
Химические мутагены индуцируют как генные, так и хромосомные мутации. Особенности их — аккумуляция и передача при делении клеток в последующей генерации, более высокая частота индуцирования генных мутаций, чем аберраций хромосом. Химические мутагены дают широкий спектр видимых хромосомных аберраций. Например, в экспериментах С. Ш. Исамухамедова по изучению действия фотрина, фосфемида и проспидина на карио-тип свиней обнаружены хроматидные и изохроматидные делеции, а также хроматидные обмены и гэпы (бреши). Гэп —хромосомная аберрация, заключающаяся в частичном разрушении хроматиды и образовании ахроматического пробела, а также в отсутствии одного или нескольких нуклеотидов в одной из цепей ДНК.
3. Биологические мутагены. Простейшие живые организмы, вызывающие мутации у животных, составляют класс биологических мутагенов. К ним относятся вирусы, бактерии, а также гельминты, актиномицеты, растительные экстракты и др. Мутагенное действие вирусов открыто генетиком Н. И. Шапиро. Мутагенными свойствами обладают живые вакцины. Мутагенное действие этих организмов связано с проникновением в клетки чужеродной ДНК. Биологические мутагены вызывают широкий спектр мутаций в клетках животных. Например, при изучении кариотипа клеток телят, ягнят и поросят, зараженных вирусом свиной лихорадки, были обнаружены различные типы аберраций — делеции, хромосомные разрывы, фрагментация, пульверизация, полиплоидия и эндоредупликация хромосом. Установлено, что уровень аберраций хромосом зависел от дозы и продолжительности действия вируса.
Исследования показывают, что многие лекарственные препараты, используемые в медицине и ветеринарии (сульфаниламиды, производные тиазинового ряда, нитрофураны и др.), обладают мутагенными свойствами. Такой же эффект возможен вследствие использования антибиотиков, а также некоторых кормовых добавок и консервантов, особенно при их передозировке.
- Лекция-1
- Глава 1 предмет, методы и значение генетики
- Лекция-2
- Цитологические
- Основы наследственности.
- План: Роль ядра и цитоплазмы в наследственности
- Роль ядра и цитоплазмы в наследственности
- Морфологическое строение хромосом
- Лекция-3 кариотип и его видовые особенности
- 1. Диплоидные наборы хромосом у сельскохозяйственных и некоторых видов домашних, прирученных и лабораторных животных
- Гаметогенез и мейоз
- Лекция-4 закономерности наследования признаков при половом размножении
- Особенности гибридологического метода менделя
- Закон единообразия гибридов первого поколения
- Закон расщепления
- Лекция-5 аллели. Множественный аллелизм
- Анализирующее скрещивание. Правило чистоты гамет
- Отклонения от ожидаемого расщепления, связанные с характером доминирования признака и летальными генами
- Лекция-6 закон независимого наследования признаков.
- 2. Вывод формулы расщепления по генотипу при дигибридном
- Полигибридное скрещивание
- 3. Количество фенотипов и генотипов в f2 при скрещивании родителей,
- Лекция-7 хромосомная теория наследственности
- Полное сцепление
- Неполное сцепление
- Лекция-8 соматический (митотический) кроссинговер.
- Карты хромосом
- Лекция-9 генетика пола.
- 5. Зависимость пола дрозофилы от отношения числа х-хромосом к числу наборов аутосом (Бриджес, 1932)
- 6. Нарушения в системе половых хромосом и их фенотипическое проявление
- Наследование признаков, ограниченных полом
- Проблема регуляции пола
- Лекция-11 молекулярные основы наследственности.
- Доказательства роли днк в наследственности
- Биологическая роль нуклеиновых кислот
- Химический состав и структура нуклеиновых кислот.
- Генетический код
- Лекция-13 генетика микроорганизмов.
- Строение и размножение бактерий
- Строение и размножение вирусов
- Взаимодействие фага с бактериальной клеткой
- Понятие о генотипе и фенотипе микроорганизмов
- Конъюгация
- Трансдукция
- Трансформация
- Лекция-14
- Генная инженерия
- Клеточная инженерия
- Гибридомная технология получения моноклональных антител
- Лекция-15 эмбриогенетическая инженерия.
- Клонирование эмбрионов млекопитающих
- Химерные животные
- Трансгенные животные
- Лекция-30
- Изменчивость и методы ее изучения
- Виды изменчивости
- Методы изучения изменчивости
- Вариационный ряд и его построение
- 9. Распределение сухостойных хорош черно-пестрой породы
- Статистические показатели для характеристики совокупности
- 10. Определение основных статистических величин способом
- Вычисление статистических показателей для малых выборок
- 12. Статистические показатели суммарного эффекта фагоцитоза
- Оценка достоверности разности между средними арифметическими двух выборочных совокупностей
- Типы распределения
- Пуассона
- Критерий хи-квадрат (х2)
- 16. Соответствие фактического распределения семейств теоретически ожидаемому (биномиальному)
- 18. Стандартные значения критерия %
- Изучение связи между признаками
- 20. Определение г для малых выборок
- Дисперсионный анализ
- Лекция-16 мутационная изменчивость.
- Классификация мутаций
- Хромосомные мутации
- Механизм образования числовых и структурных аномалий кариотипа
- Генные мутации
- Лекция-17 индуцированный мутагенез.
- Генетические последствия загрязнения окружающей среды и защита животных от мутагенов
- Антимутагены
- Лекция-18
- Раскрытие сложной структуры гена
- Влияние генов на развитие признаков
- Дифференциальная активность генов на разных этапах онтогенеза
- Взаимодействие ядра и цитоплазмы в развитии
- Регуляция синтеза иРнк и белка
- Влияние среды на развитие признаков
- Генетика популяций
- Популяция и «чистая линия»
- Структура свободно размножающейся популяции. Закон харди - вайнберга
- Основные факторы генетической эволюции в популяциях
- Влияние инбридинга на выщепление рецессивных летальных и полулетальных генов
- 31. Формы уродств в потомстве быка Бурхана 6083
- Генетический груз в популяциях животных
- Генетическая адаптация и генетический гомеостаз популяций
- Генетические основы гетерозиса
- Лекция-20
- Глава 13 группы крови и биохимический полиморфизм
- 32. Системы генетических групп крови
- Наследование групп крови
- 33. Уточнение отцовства по группам крови
- Биохимический полиморфизм
- 34. Некоторые биохимические полиморфные системы
- Лекция-18
- Генетические основы иммунитета
- Структура иммуноглобулинов
- Генетика иммуноглобулинов
- Лекция-19 генетический контроль иммунного ответа
- Главный комплекс гистосовмести мости (мнс)
- Связь мне и других антигенов гистосовместимости с болезнями
- 38. Взаимосвязь аллелей комплекса в с заболеваемостью кур md, % (по Hansen и др.)
- Первичные (врожденные) дефекты иммунной системы
- Лекция-24
- Генетические аномалии у сельскохозяйственных животных
- Генетические аномалии
- Наследственно-средовые аномалии
- Генетический анализ в изучении этиологии врожденных аномалий
- Простой аутосомный рецессивный тип наследования
- Лекция-25 аутосомный доминантный тип наследования
- Сцепленный с х-хромосомой тип наследования
- 42. Сцепленный с х-хромосомой тип наследования
- Мультифакториальное наследование
- Аномалии у сельскохозяйственных животных, обусловленные мутациями генов
- 43. Список генетически обусловленных аномалий у крупного рогатого скота
- 46. Список генетически обусловленных аномалий у овец
- 47. Наследственные дефекты, встречающиеся
- Распространение аномалий хромосом в популяциях животных
- Числовые и структурные мутации кариотипа и фенотипические аномалии животных
- 48. Типы центрических слияний (транслокаций)
- 50. Продолжительность сервис-периода
- 52. Срввнение снижения воспроизводительной способности
- 54. Хромосомные аберрации в разных линиях кур (по Блому, 1974)
- Лекция-26
- Глава 16 болезни с наследственной предрасположенностью
- Генетическая устойчивость и восприимчивость к бактериальным болезням
- Генетическая устойчивость и восприимчивость к гельминтозам
- Генетическая устойчивость и восприимчивость к протозоозам
- Генетическая устойчивость и восприимчивость к клещам
- Генетическая обусловленность респираторных болезней
- Лекция-27 генетическая обусловленность болезней желудочно-кишечного тракта
- Болезни обмена веществ
- Роль наследственности в предрасположенности животных к болезням конечностей
- 74. Чвстотв болезней и деформация копыт у коров различного происхождения, % (по Косолвпикову)
- Роль наследственности в предрасположенности к бесплодию
- Роль наследственности в предрасположенности к стрессу
- Влияние факторов среды на устойчивость к болезням
- Лекция-28
- Учет врожденных аномалий и болезней. Методы генетического анализа
- Повышение наследственной устойчивости животных к болезням
- Оценка генофонда пород
- Наследуемость и повторяемость устойчивости к заболеваниям
- 80. Коэффициент наследуемости устойчивости (%) к некоторым болезням
- Массовый отбор на резистентность
- Комплексная оценка генофонда семейств, линий и потомства производителей
- Лекция-29 показатели отбора при селекции на устойчивость к болезням
- Селекция животных на устойчивость к болезням
- Непрямая селекция на резистентность
- Импульсно-циклический способ разведения по линиям
- Мероприятия по повышению устойчивости к болезням
- Словарь терминов
- Глава 2. Цитологические осоты наследственности. А. И. Жмгачев 9
- Глава 4. Хромосомная теория наследственности. Г. А. Назарова 51
- Глава 6. Молекулярные основы наследственности. Г. А. Назарова .... 74
- Глава 7. Генетика микроорганизмов. Г. А. Назарова 91
- Глава 8. Биотехнология. Г. А. Назарова, в. Л. Петухов 103
- Глава 11. Генетические основы онтогенеза. Г. А. Назарова 178
- Глава 12. Генетика популяций. А. И. Жнгачев 196
- Глава 14. Генетические основы иммунитета. В. Л. Лопухов 228