34. Некоторые биохимические полиморфные системы
Система | Символ локуса | Число аллелей | ||||
Крупный рогатый скот | Свиньи | Овцы | Лошади | Куры | ||
Гемоглобин Альбумин Трансферрин | нь Alb Tf | 10 9 12 | - 5 3 7 ' 5 13 | 2 3 10 | 2 3 4 |
Продолжение
Система | Символ локуса | Число аллелей | ||||
Крупный рогатый скот | Свиньи | Овцы | Лошади | Куры | ||
Церулоплазмин | Ср | 3 | 2 | |||
Эстераза | Es | 2 | 2 3 6 3 | |||
р-Лактоглобулин | P-U | 4 | _ _ _ _ | |||
ctsi-Казеин | asj-Cn | 4 |
| |||
р-Казеин | P-Cn | 6 |
| |||
к-Казеин | к-Cn | 2 |
| |||
у-Казеин | T-Cn | 4 |
|
|
|
|
Аллели гемоглобинового локуса обозначаются так: HbA, HbB и т. д., а генотип — НЬАНЬА, НЬВНЬВ и т. д. В связи с кододоми-нантным наследованием большинства биохимических систем фенотип животного соответствует его генотипу, поэтому фенотип можно записать НЬАА или НЬА, НЬВВ или НЬВ.
Замещение аминокислот в белке может вызвать функциональные различия полиморфных форм. Например, у человека кроме нормального гемоглобина НЬ* известно более 50 патологических вариантов S, С, G и т. д., которые вызывают различные гемоглобинопатии (серповидно-клеточная анемия S, талассемия С). Одним из первых был открыт гемоглобин серповидных эритроцитов, который от нормального отличается заменой в шестом положении глутаминовой аминокислоты на валин. В районах распространения тропической малярии лица, гомозиготные по HbsHbs, погибают в раннем возрасте от серповидно-клеточной анемии. Гетерозиготы Hl^Hb8 устойчивы к малярии, а люди с нормальным генотипом Hty^HtA предрасположены к заболеванию.
Это неоспоримый пример сбалансированного полиморфизма, когда приспособленность гетерозигот выше, чем гомозигот, а оба аллеля сохраняются в популяции с промежуточной частотой. Это доказывает существование однолокусного гетерозиса по устойчивости к болезни. В. П. Эфроимсон (1968) выдвинул гипотезу о том, что иммунитет к малярии имеет адаптивное значение и обусловлен изменением молекулы гемоглобина НЬ, что препятствует его использованию малярийным плазмодием.
Гемоглобин выполняет важную для организма функцию переноса кислорода из органов дыхания к тканям и переноса углекислого газа от тканей в органы дыхания. У крупного рогатого скота открыто 10 типов гемоглобина, но у скота швицкой, костромской, джерсейской и других пород в основном встречаются аллели НЬ^ и НЬВ. У животных черно-пестрой, айрширской, герефордской и других пород имеется только один тип А.
Хорошо изучен полиморфизм трансферрина (Tf), который переводит железо плазмы в диионизированную форму и переносит его в костный мозг, где оно используется вновь для кроветворения. Трансферрин также подавляет размножение вирусов в организме. У человека недостаточность трансферрина может быть следствием некоторых перенесенных заболеваний, в частности наследственного гемохроматоза. Количество Tf снижается при циррозе печени, инфекционных болезнях. На рисунке 47 представлена схема расшифровки электрофореграммы типов трансферрина. Известно 12 аллелей Tf, но среди европейских пород наиболее часто встречаются аллели A, Di, D2 и Е.
Белок церулоплазмин (Ср) играет центральную роль в обмене меди в организме, являясь основным переносчиком ее в ткани. Нарушение функции церулоплазмина или снижение его содержания в плазме крови ведет, например у человека, к возникновению генетического заболевания нервной системы с некротическими изменениями в печени.
Все больше появляется работ по иммуногенетическому анализу белковых систем. Генетически детерминируемые анти-генные^арианты сывороточных белков, по которым различают особей одного вида, называют аллотипами. О. К. Баранов (1981) у американской норки выявил 8 аллотипов липопротеина (Lpm), обозначенных цифрами от 1 до 8. Липопротеины транспортируют липиды. Предполагают, что аллотипы Lpm-системы кодируются комплексом тесно сцепленных гомологичных генов. Аллотипы в основном наследуются аллогруппами,
Рис. 47. Расшифровка электрофореграммы различных типов сывороточных трансферринов крупного рогатого скота
например Lpm6>8, Lpm4'6> 8, Lpm3'4>6>8 и т. д. Аллогруппа — совокупность аллотипов, наследуемых как одна группа. Совокупность сцепленных генов одной хромосомы, контролирующих аллогруппу, называют гаплотипом.
У свиней идентифицированные аллотипы липопротеина детерминируются генами пяти локусов, временно обозначенных р, г, s, t, u. Закрытая система Lpb включает 8 аллелей, Lpr и Lpu — по два аллеля, а открытые системы Lps и Lpt — один аллель. Все аллотипы определяются аутосомными кодоминантными генами. Локусы и, р, t тесно сцеплены, а г и s локализованы в разных хромосомах. Имеются данные о связи некоторых типов Lpb с артериосклерозом у свиней.
ЗНАЧЕНИЕ БИОХИМИЧЕСКОГО ПОЛИМОРФИЗМА
Биохимические полиморфные системы белков используются для следующих целей:
изучения причин и динамики генотипической изменчивос ти, составляющей основу эволюционной генетики;
уточнения происхождения отдельных животных;
описания межпородной и внутрипородной дифференциа ции, изучения филогенеза и аллелофонда пород, линий и се мейств, а также генетических процессов, происходящих в попу ляциях животных, и изменения их генетической структуры в процессе селекции;
определения моно- и дизиготных двоен;
построения генетических карт хромосом;
подбора гетерозисной сочетаемости;
выявления связи с резистентностью к заболеваниям, про дуктивностью;
использования биохимических систем в качестве генетичес ких маркеров в селекции животных.
Изучение 9 полиморфных систем белков у 10 главных групп скота позволило подтвердить вывод о том, что зебувидный скот Индии значительно отличается от европейских пород и принадлежит к другому виду (Bos indicus). Санга (тип африканского горбатого скота) занимает промежуточное положение между индийским зебу и европейскими породами, но в то же время имеет свои уникальные признаки. Часть из них — следствие обмена генов в результате миграции зебувидного скота Индии в Африку. Использование генных частот позволяет вычислить генетические дистанции между породами и определить их эволюционную взаимосвязь. На рисунке 48 в качестве примера показаны эволюционные взаимосвязи между 14 породами скота.
По данным С. А. Петрушки (1970), частота аллеля p-LgA была в 2 раза выше у животных голландской и симментальской пород (0,514 и 0,436) в сравнении с бурой латвийской (0,210). Многие
Рис. 48. Эволюционные взаимосвязи между 14 городами скота, вычисленные на основании генетического расстояния но 14 локусам. Филогенетическое древо изображено в полярных координатах; расстояние оценивалось способом наименьших квадратов радиальной длины каждого сегмента (по Kidd п др., 1980)
европейские породы имеют очень низкую частоту типов транс-феррина ТР и TF.
Использование полиморфных систем белков вместе с группами крови повышает точность определения происхождения животных. Так, по группам крови отцовство можно установить в 81 % случаев, а дополнительные анализы только типов транс-феррина повышают точность до 90 %.
По данным В. В. Пилько, Ю. О. Шапиро и А. С. Гурьяновой (1970), в четырех хозяйствах Белоруссии у коров бурой латвийской и костромской пород с TfDD удой был выше на 256— 270 кг, чем у животных с другими генотипами. Л. С. Жеброский и др. (1979) на большом материале показали, что ген к-СпА во всех стадах связан с повышенной молочностью. Таким же эффектом обладает аллель p-LgA, но в то же время он снижал содержание жира в молоке коров черно-пестрой породы.
Данные по красной датской породе свидетельствуют о том, что только 3 % генетической изменчивости в содержании жира и 5 % в молочности обусловлены различиями по группам крови. Видимо, есть большая вероятность установления более тесной корреляции генетических полиморфных систем с резистентное -тью к некоторым заболеваниям вследствие менее сложной их генетической детерминации, чем признаков продуктивности.
Анализ полиморфизма яичного белка овоглобулинового локу-са G3 показал, что куры с типом АВ более устойчивы к пуллоро-зу—тифу. Восприимчивость к этому заболеванию кур породы леггорн была связана с аллелем G^S, а породы корниш — с алле-лем GB3.
В Австралии, а потом в Кении у породы овец ромни-марш с типом гемоглобина НЬА найдена более высокая резистентность к гемонхозу (заболевание, вызываемое нематодами, паразитирующими в сычуге), чем у животных с гемоглобином типов НЬВ и НЬАВ. Однако имеются сведения и об отсутствии связи типов гемоглобина у местных флоридских овец с невосприимчивостью к гемонхозу.
Устойчивость овец к лептоспирозу связана с гетерозиготнос-тью по гемоглобиновому локусу (НЬАВ), тогда как особи с типом А или В более восприимчивы. Эта инфекционная болезнь проявляется у животных кратковременной лихорадкой, желтухой, гемоглобинурией, абортами и другими признаками. У свиней найдена ассоциация лептоспироза с аллелем амилазы АтА. Уровень антител к лептоспирозу увеличивался у животных с этим аллелем, а с аллелем Am" — уменьшался.
У свиней установлена связь типов фермента фосфогексоизо-мераза (PHI) с синдромом злокачественной гипертермии (MHS). Коэффициент корреляции между чувствительностью к MHS и генотипом РН1В/РН1В равен 0,19, а относительный риск возникновения MHS у особей этого генотипа по отношению к имеющим его животным был 18,8.
Изучение новых биохимических полиморфных систем позволит глубже понять динамику генотипической изменчивости в популяциях и механизмы поддержания этой изменчивости, изменение генетической структуры популяций при селекции, планирование и контроль с их помощью селекционного процесса. Можно рассчитывать на выявление более однозначных связей отдельных аллелей или их совокупности с резистентностью к болезням, признакам продуктивности и использовать полиморфные системы как генетические маркеры в селекции.
Контрольные вопросы. 1. Что такое генетическая система групп крови, тип крови, феногруппа? 2. В чем заключаются особенности наследования групп Крови? 3. Как определяются группы крови у животных? 4. Какие теоретические предпосылки лежат в основе связи групп крови с продуктивностью и устойчивостью к болезням? 5. Какое значение группы крови имеют для практики? 6. Почему возникает гемолитическая болезнь новорожденных? Какие методы профилактики этой болезни вы знаете? 7. Что лежит в основе генетического полиморфизма? 8. Какое значение для практики имеет биохимический полиморфизм?
- Лекция-1
- Глава 1 предмет, методы и значение генетики
- Лекция-2
- Цитологические
- Основы наследственности.
- План: Роль ядра и цитоплазмы в наследственности
- Роль ядра и цитоплазмы в наследственности
- Морфологическое строение хромосом
- Лекция-3 кариотип и его видовые особенности
- 1. Диплоидные наборы хромосом у сельскохозяйственных и некоторых видов домашних, прирученных и лабораторных животных
- Гаметогенез и мейоз
- Лекция-4 закономерности наследования признаков при половом размножении
- Особенности гибридологического метода менделя
- Закон единообразия гибридов первого поколения
- Закон расщепления
- Лекция-5 аллели. Множественный аллелизм
- Анализирующее скрещивание. Правило чистоты гамет
- Отклонения от ожидаемого расщепления, связанные с характером доминирования признака и летальными генами
- Лекция-6 закон независимого наследования признаков.
- 2. Вывод формулы расщепления по генотипу при дигибридном
- Полигибридное скрещивание
- 3. Количество фенотипов и генотипов в f2 при скрещивании родителей,
- Лекция-7 хромосомная теория наследственности
- Полное сцепление
- Неполное сцепление
- Лекция-8 соматический (митотический) кроссинговер.
- Карты хромосом
- Лекция-9 генетика пола.
- 5. Зависимость пола дрозофилы от отношения числа х-хромосом к числу наборов аутосом (Бриджес, 1932)
- 6. Нарушения в системе половых хромосом и их фенотипическое проявление
- Наследование признаков, ограниченных полом
- Проблема регуляции пола
- Лекция-11 молекулярные основы наследственности.
- Доказательства роли днк в наследственности
- Биологическая роль нуклеиновых кислот
- Химический состав и структура нуклеиновых кислот.
- Генетический код
- Лекция-13 генетика микроорганизмов.
- Строение и размножение бактерий
- Строение и размножение вирусов
- Взаимодействие фага с бактериальной клеткой
- Понятие о генотипе и фенотипе микроорганизмов
- Конъюгация
- Трансдукция
- Трансформация
- Лекция-14
- Генная инженерия
- Клеточная инженерия
- Гибридомная технология получения моноклональных антител
- Лекция-15 эмбриогенетическая инженерия.
- Клонирование эмбрионов млекопитающих
- Химерные животные
- Трансгенные животные
- Лекция-30
- Изменчивость и методы ее изучения
- Виды изменчивости
- Методы изучения изменчивости
- Вариационный ряд и его построение
- 9. Распределение сухостойных хорош черно-пестрой породы
- Статистические показатели для характеристики совокупности
- 10. Определение основных статистических величин способом
- Вычисление статистических показателей для малых выборок
- 12. Статистические показатели суммарного эффекта фагоцитоза
- Оценка достоверности разности между средними арифметическими двух выборочных совокупностей
- Типы распределения
- Пуассона
- Критерий хи-квадрат (х2)
- 16. Соответствие фактического распределения семейств теоретически ожидаемому (биномиальному)
- 18. Стандартные значения критерия %
- Изучение связи между признаками
- 20. Определение г для малых выборок
- Дисперсионный анализ
- Лекция-16 мутационная изменчивость.
- Классификация мутаций
- Хромосомные мутации
- Механизм образования числовых и структурных аномалий кариотипа
- Генные мутации
- Лекция-17 индуцированный мутагенез.
- Генетические последствия загрязнения окружающей среды и защита животных от мутагенов
- Антимутагены
- Лекция-18
- Раскрытие сложной структуры гена
- Влияние генов на развитие признаков
- Дифференциальная активность генов на разных этапах онтогенеза
- Взаимодействие ядра и цитоплазмы в развитии
- Регуляция синтеза иРнк и белка
- Влияние среды на развитие признаков
- Генетика популяций
- Популяция и «чистая линия»
- Структура свободно размножающейся популяции. Закон харди - вайнберга
- Основные факторы генетической эволюции в популяциях
- Влияние инбридинга на выщепление рецессивных летальных и полулетальных генов
- 31. Формы уродств в потомстве быка Бурхана 6083
- Генетический груз в популяциях животных
- Генетическая адаптация и генетический гомеостаз популяций
- Генетические основы гетерозиса
- Лекция-20
- Глава 13 группы крови и биохимический полиморфизм
- 32. Системы генетических групп крови
- Наследование групп крови
- 33. Уточнение отцовства по группам крови
- Биохимический полиморфизм
- 34. Некоторые биохимические полиморфные системы
- Лекция-18
- Генетические основы иммунитета
- Структура иммуноглобулинов
- Генетика иммуноглобулинов
- Лекция-19 генетический контроль иммунного ответа
- Главный комплекс гистосовмести мости (мнс)
- Связь мне и других антигенов гистосовместимости с болезнями
- 38. Взаимосвязь аллелей комплекса в с заболеваемостью кур md, % (по Hansen и др.)
- Первичные (врожденные) дефекты иммунной системы
- Лекция-24
- Генетические аномалии у сельскохозяйственных животных
- Генетические аномалии
- Наследственно-средовые аномалии
- Генетический анализ в изучении этиологии врожденных аномалий
- Простой аутосомный рецессивный тип наследования
- Лекция-25 аутосомный доминантный тип наследования
- Сцепленный с х-хромосомой тип наследования
- 42. Сцепленный с х-хромосомой тип наследования
- Мультифакториальное наследование
- Аномалии у сельскохозяйственных животных, обусловленные мутациями генов
- 43. Список генетически обусловленных аномалий у крупного рогатого скота
- 46. Список генетически обусловленных аномалий у овец
- 47. Наследственные дефекты, встречающиеся
- Распространение аномалий хромосом в популяциях животных
- Числовые и структурные мутации кариотипа и фенотипические аномалии животных
- 48. Типы центрических слияний (транслокаций)
- 50. Продолжительность сервис-периода
- 52. Срввнение снижения воспроизводительной способности
- 54. Хромосомные аберрации в разных линиях кур (по Блому, 1974)
- Лекция-26
- Глава 16 болезни с наследственной предрасположенностью
- Генетическая устойчивость и восприимчивость к бактериальным болезням
- Генетическая устойчивость и восприимчивость к гельминтозам
- Генетическая устойчивость и восприимчивость к протозоозам
- Генетическая устойчивость и восприимчивость к клещам
- Генетическая обусловленность респираторных болезней
- Лекция-27 генетическая обусловленность болезней желудочно-кишечного тракта
- Болезни обмена веществ
- Роль наследственности в предрасположенности животных к болезням конечностей
- 74. Чвстотв болезней и деформация копыт у коров различного происхождения, % (по Косолвпикову)
- Роль наследственности в предрасположенности к бесплодию
- Роль наследственности в предрасположенности к стрессу
- Влияние факторов среды на устойчивость к болезням
- Лекция-28
- Учет врожденных аномалий и болезней. Методы генетического анализа
- Повышение наследственной устойчивости животных к болезням
- Оценка генофонда пород
- Наследуемость и повторяемость устойчивости к заболеваниям
- 80. Коэффициент наследуемости устойчивости (%) к некоторым болезням
- Массовый отбор на резистентность
- Комплексная оценка генофонда семейств, линий и потомства производителей
- Лекция-29 показатели отбора при селекции на устойчивость к болезням
- Селекция животных на устойчивость к болезням
- Непрямая селекция на резистентность
- Импульсно-циклический способ разведения по линиям
- Мероприятия по повышению устойчивости к болезням
- Словарь терминов
- Глава 2. Цитологические осоты наследственности. А. И. Жмгачев 9
- Глава 4. Хромосомная теория наследственности. Г. А. Назарова 51
- Глава 6. Молекулярные основы наследственности. Г. А. Назарова .... 74
- Глава 7. Генетика микроорганизмов. Г. А. Назарова 91
- Глава 8. Биотехнология. Г. А. Назарова, в. Л. Петухов 103
- Глава 11. Генетические основы онтогенеза. Г. А. Назарова 178
- Глава 12. Генетика популяций. А. И. Жнгачев 196
- Глава 14. Генетические основы иммунитета. В. Л. Лопухов 228