logo search
kollokvium_po_fizike

Микроскоп

Для наблюдения малых объектов, не видимых вооруженным глазом, применяется микроскоп — оптическая система, состоя­щая в простейшем случае из короткофокусной собирающей лин­зы (объектива) и длиннофокусной собирающей линзы (окуляра). Микроскоп состоит из меха­нической части (основание, мик­рометрический механизм, предметный столик, револьвер с объек­тивами) и оптической системы, которая также делится на две час­ти: осветительную и на­блюдательную. В осветительную часть вхо­дят зеркало или осветитель, конденсор с диафрагмой и съемный фильтр, а в наблюдательную — объ­ектив и окуляр, соединенные в тубусе микро­скопа. Предмет АВ помещается на рас­стоянии d, немного большем фокусного расстоя­ния объек­тива (F). Действительное, увеличен­ное и пере­вернутое изображение А1В1, даваемое объекти­вом, по­лучается на расстоянии d2 от окуляра, не­много меньшим фокус­ного расстоя­ния окуляра F0K. Это промежуточное изображе­ние рассмат­ривается окуляром как предмет. Окуляр дает изображение А2В2 мнимое, увели­ченное, прямое по отношению к А1В1. В ре­зультате микроскоп дает мнимое, увеличенное и перевернутое (отно­сительно предмета АВ) изображение, находя­щееся от окуля­ра на рас­стоянии L (О2В2), назы­ваемое расстоянием наилучшего зрения (для нормального глаза L = 25 см).

Расстояние ∆ = F1F2 между задним фокусом объектива и передним фокусом окуляра назы­вается оптической длиной ту­буса микро­скопа.

Увеличение объектива выражается формулой: Гок = ∆/Fок

Для окуляра: Гок = L/Fок

Общее увеличение микроскопа равно произведе­нию увеличе­ний объектива и окуляра:

Гм = ГобГок = ∆L/FобFок

В зависимости от характера и свойств изучаемого препарата, в микроскопии применяются специ­альные методы наблюдения. Метод светлого поля в проходящем свете применяется при ис­следовании прозрачных препаратов с вклю­чен­ными в них по­глощающими частицами и дета­лями. Пучок лучей, проходя через препарат, дает равномерно освещенное поле в плоскости изобра­жения. Если в препарате имеется погло­щающий свет объект, то он частично рассеивает его, что и обуславливает возникновение изобра­жения. Метод светлого поля в отраженном свете применя­ется для наблюдения непрозрачных объ­ектов. Метод темного поля в проходящем свете применяется в био­логии, главным образом, для получения изображений непрозрач­ных объектов. Пучок лучей, освещающих препарат, не попадает не­посредственно в объектив. Изо­бражение соз­дается только светом, рассеянным микрочасти­цами. В поле зрения на темном фоне вид­ны изо­бражения частиц, отличающихся от окру­жающей среды по показателю преломления. Ме­тод темного поля в отраженном свете осуще­ств­ляется освещением непрозрачного препарата сверху спе­циальной системой, расположенной вокруг объектива. Метод наблюдения в поляри­зованных лучах применяется в проходящем и отраженном свете для исследования под микро­ско­пом объектов, обладающих двойным луче­преломлением. Препа­рат освещается поляризо­ванным светом. Видоизмененный поля­ризован­ный свет, прошедший через препарат, изучается с помо­щью анализаторов и компенсаторов раз­личного устройства.

Метод фазового контраста служит для получе­ния изображе­ний прозрачных и бесцветных объ­ектов, невидимых при обычных методах микро­скопии. Метод основан на том, что показа­тели пре­ломления объекта и среды различны, вслед­ствие чего световая волна, прошедшая сквозь объект, претерпевает изменения по фазе и приоб­ретает, так называемый "фазовый рельеф». Эти фа­зовые изменения преобразуются специ­альным фазово - контра­стным устройством в изменения амплитуд, что приводит к ослаб­лению или уси­лению интенсивности света, прошедшего через объект. В результате получается видимое контра­стное изображе­ние структуры препарата, в кото­ром распределение яркостей (ам­плитуд) воспро­изводит указанный выше фазовый рельеф. Ме­тод микропроекции и микрофотографии при­меняется для наблюдения или исследования изо­бражения объекта на экране или на фотомате­риале. При этом, чтобы получить действительное изображение объекта, с помощью специальных устройств увели­чивают длину тубуса микро­скопа так, что промежуточное изоб­ражение А1В1, находится немного дальше переднего фокуса оку­ляра, а изображение (действительное, обрат­ное и увеличенное) получается за окуляром на экране или фотопленке.