Гаметогенез и мейоз
Процесс развития половых клеток носит название гаметогене-зв. У самцов этот процесс называется спермиогенезом, а у самок — овогенезом (рис. 6). Половые клетки в развитии последовательно проходят следующие стадии: размножения, роста, созревания и формирования. В стадии размножения клетки интенсивно делятся митотическим путем. В стадии роста клетки накапливают питательные вещества, особенно при овогенезе.
Наиболее ответственный момент с точки зрения генетики при образовании половых клеток — мейоз — процесс редукционного и эквационного деления ооцитов и сперматоцитов, в результате которого образуются половые клетки с гаплоидным набором хромосом. Рассмотрим наиболее важные моменты поведения вдомосом в мейозе. В этом процессе выделяют две стадии деления (см. схему): 1) редукционную и 2) эквационную.
Схема мейоза
Рис. 6. Сравнение процессов снерматогевеза и овогенеза у животных с гаплоидным числом хромосом, равным 2 (по К. Вилли и В. Детье, 1975)
Непосредственно перед мейозом клетки половых желез находятся в интерфазе.
Редукционное деление начинается с профазы I, которая, как видно из схемы, подразделяется на пять фаз. На первой стадии профазы I — лептонемы хромосомы деспирализо-ваны, они в 2—5 раз длиннее метафазных. Под электронным микроскопом можно видеть, что они состоят из двух хроматид, соединенных центромерой. На следующей стадии — зигонемы наблюдаются притяжение и слияние (конъюгация) гомологичных хромосом. Каждая пара конъюгирующих хромосом образует бивалент, а по числу хроматид — тетраду. На этой стадии происходит образование синаптонемного комплекса (СК), входящего в состав бивалента. Нарушение формирования СК между гомологичными хромосомами наблюдают у гетерозиготных носителей хромосомных аберраций. Далее, на стадии пахинемы, происходят утолщение и укорочение хромосом, так что сестринские хрома-тиды становятся хорошо различимыми; на отдельных из них можно видеть и ядрышки.
Следующая фаза — диплонема характеризуется тем, что конъ-югярующие хромосомы начинают отталкиваться и постепенно расходятся от центромеры к концам. При этом образуются характерные фигуры, напоминающие греческую букву «хи» (х) и получившие вследствие этого название хиазмы. В точках соприкосновения гомологичных хромосом возникают разрывы. Они могут быть одинарными, двойными и более сложными. В результате разрывов образуются фрагменты хроматид, которые затем могут воссоединяться на другой хромосоме, изменяя тем самым комбинацию генетического материала в клетке.
Обмен участками между гомологичными хромосомами получил название кроссинговера.
На последней стадии профазы I — диакинезе происходит резкое укорочение хромосом, так что к концу этой стадии хроматиды остаются связанными только на концевых участках. Этим и заканчивается профаза I. Необходимо отметить, что при более детализированном изучении мейоза в профазе выделяют и другие промежуточные стадии, например пролептонему, диктионему и т. д.
На стадии метафазы I биваленты располагаются в плоскости экватора центромерами к противоположным полюсам. Силы отталкивания здесь увеличиваются.
В анафазе I начинается расхождение гомологичных хромосом к противоположным полюсам, которое носит случайный характер. Каждая из пар гомологичных хромосом имеет одинаковую вероятность распределения в одну из двух дочерних клеток.
В телофазе I хромосомы достигают полюсов клетки. Затем восстанавливаются ядерная оболочка и ядрышко, хромосомы декон-денсируются. В конце телофазы делится цитоплазма (цитокинез) и образуются две дочерние клетки с гаплоидным набором хромосом.
Отличительной особенностью первой стадии мейоза является то, что в период анафазы сами хромосомы не делятся на хроматиды, как при митозе, а лишь расходятся гомологичные пары хромосом к разным полюсам клетки и формируются две дочерние клетки с редуцированным наполовину набором хромосом, состоящим, однако, из двух хроматид.
Между первой и второй стадиями мейоза имеется непродол-жипрелыщй период покоя — интеркинез, во время которого не происходит репродукции хромосом.
Эквационное, или уравнительное, деление аналогично митозу, где клетки последовательно проходят четыре фазы: профазу II, метафазу II, анафазу II, телофазу II. На стадии йнафазы II хромосомы разделяются на две хроматиды, которые ЭДтем с помощью нитей веретена расходятся к противоположным полюсам. На стадии телофазы II заканчивается формирование еще двух клеток. В результате после двух последовательных, стадий мейоза из каждой клетки образуются четыре новые с гаплоидным набором хромосом. Для более наглядного представления всех этих событий можно воспользоваться схемой мейоза, приведенной на рисунке 7.
Рис. 7, Схем» последовательных спщнй мейоза (по К. Смясоиу н П. Уэбстеру, 1980):
А — лептонема, предшествующая конъюгации хромосом; Б — начало конъюгации на стадии зигонемы; В— пахинема; Г— диплонема; Д— метафаза I; E— анафаза I; .ЖГ~-телофаза I; 3 — интерфаза между двумя делениями мейоза; Я—профаза II; К— метафаза II; ЛГ—тело-фаза II
Таким образом, в результате двух мейотических делений из одной клетки с диплоидным набором хромосом образуются четыре клетки с гаплоидным набором хромосом и в 2 раза меньшим, чем в соматических клетках, содержанием ДНК. Вероятностный характер распределения материнских и отцовских гомологичных хромосом в разные клетки позволяет создать новые комбинации негомологичных хромосом в яйцеклетках и сперми-ях, чем достигается огромное число новых сочетаний наследственной информации.
Новые сочетания генетической информации возникают вследствие кроссинговера. Каждая из хромосом в метафазе I содержит участки, происходящие от отцовских и материнских хромосом. Рекомбинации хромосом при кроссинговере и вероятностное распределение их по клеткам — причины наследственной изменчивости организма. Мейоз, оплодотворение и митоз обеспечивают поддержание постоянства числа хромосом в смежных поколениях видов. В этом их биологическое значение.
Патология мейоза. Основная патология мейоза — нерасхождение хромосом. Оно может быть первичным, вторичным и третичным. Первичное нерасхождение возникает у особей с нормальным кариотипом. При этом на стадии анафазы I нарушается разделение бивалентов и обе хромосомы из пары гомологов переходят в одну клетку, что приводит к избытку хромосом в данной клетке (л + 1) и недостатку в другой (л—1). Вторичное нерасхождение возникает в гаметах у особей с избытком (трисо-мией) одной хромосомы в кариотипе. В результате этого в процессе мейоза образуются и биваленты, и униваленты. Третичные нерасхождения наблюдают у особей, имеющих структурные перестройки хромосом, например транслокации. Нерасхождение хромосом отрицательно влияет на жизнеспособность организма животных. Подробно об этом будет изложено в последующих главах.
Отличительная особенность мейоза у самок — образование в первом и втором мейотических делениях так называемых полярных телец, которые впоследствии дегенерируют и в размножении не участвуют. Неравные деления в овогенезе обеспечивают яйцеклетке необходимое количество цитоплазмы и запасного желтка, чтобы она могла выжить после оплодотворения. В отличие от спермиогенеза, который у самцов происходит как во внутриутробный (пренатальный) период, так и после рождения (постна-тальный период), у самок яйцеклетка после рождения не образуется. Однако к концу пренатального периода у самок накапливается огромное количество овоцитов (у коров, например, десятки тысяч), а созревают и дают начало развитию потомства лишь немногие из них. Этот резерв генетического материала, особенно у малоплодных животных, таких, как крупный рогатый скот, в настоящее время начинают использовать для искусственного стимулирования созревания многих яйцеклеток, последующего их оплодотворения и пересадки (трансплантации) специально подготовленным коровам-реципиентам. Таким образом от одной ценной коровы в год можно получить не одного, а несколько телят.
Оплодотворение наступает после слияния гаплоидных сперматозоида и яйцеклетки и образования диплоидной клетки — зиготы, дающей начало развитию эмбриона. При делении клеток эмбриона, содержащих хромосомы матери и отца, генетическая информация поступает во все клетки нового организма.
Морфологические и функциональные различия хромосомных наборов — основные причины эмбриональной смертности после оплодотворения при скрещивании разных видов или бесплодия гибридов. Так, при скрещивании зайца и кролика не происходит имплантации и развития оплодотворенной яйцеклетки. Эмбриональная смертность наступает при скрещивании козы и овцы. Мужские гибщады осла (2л = 62) и лошади (2л = 64), как известно, не &щ т потомства, они стерильные, или бесплодные. Стерильность гибридов-самцов наблюдается при скрещивании европейского крупного рогатого скота с бизоном, зубром, яком, а также гауром и гаялом.
Это связано с тем, что у гибридов нарушаются процессы спермиогенеза. Однако при скрещивании европейского крупного рогатого скота с азиатским горбатым зебу, дикого кабана (2л = 36) и домашней свиньи (2л = 38) потомство рождается плодовитое. В результате сложных вариантов скрещиваний в последнее время удалось получить плодовитых гибридов крупного рогатого скота с зуС^ом, бизоном, яком. Гибриды отличаются такими ценными качествами, как крепкое телосложение, высокая жизнеспособность, хорошие мясные признаки.
Контрольные вопросы.
1. Каковы морфологическое строение и химический состав хромосом?
2. Что такое кариотип и каковы его особенности у разных видов животных?
3. Что такое митоз н каково его биологическое значение?
4. Что такое гаметогенез и каковы его особенности у самцов и самок?
5. Что вы знаете о мейозе и его биологическом значении?
6. Каковы основные формы патологий митоза и мейоза?
- Лекция-1
- Глава 1 предмет, методы и значение генетики
- Лекция-2
- Цитологические
- Основы наследственности.
- План: Роль ядра и цитоплазмы в наследственности
- Роль ядра и цитоплазмы в наследственности
- Морфологическое строение хромосом
- Лекция-3 кариотип и его видовые особенности
- 1. Диплоидные наборы хромосом у сельскохозяйственных и некоторых видов домашних, прирученных и лабораторных животных
- Гаметогенез и мейоз
- Лекция-4 закономерности наследования признаков при половом размножении
- Особенности гибридологического метода менделя
- Закон единообразия гибридов первого поколения
- Закон расщепления
- Лекция-5 аллели. Множественный аллелизм
- Анализирующее скрещивание. Правило чистоты гамет
- Отклонения от ожидаемого расщепления, связанные с характером доминирования признака и летальными генами
- Лекция-6 закон независимого наследования признаков.
- 2. Вывод формулы расщепления по генотипу при дигибридном
- Полигибридное скрещивание
- 3. Количество фенотипов и генотипов в f2 при скрещивании родителей,
- Лекция-7 хромосомная теория наследственности
- Полное сцепление
- Неполное сцепление
- Лекция-8 соматический (митотический) кроссинговер.
- Карты хромосом
- Лекция-9 генетика пола.
- 5. Зависимость пола дрозофилы от отношения числа х-хромосом к числу наборов аутосом (Бриджес, 1932)
- 6. Нарушения в системе половых хромосом и их фенотипическое проявление
- Наследование признаков, ограниченных полом
- Проблема регуляции пола
- Лекция-11 молекулярные основы наследственности.
- Доказательства роли днк в наследственности
- Биологическая роль нуклеиновых кислот
- Химический состав и структура нуклеиновых кислот.
- Генетический код
- Лекция-13 генетика микроорганизмов.
- Строение и размножение бактерий
- Строение и размножение вирусов
- Взаимодействие фага с бактериальной клеткой
- Понятие о генотипе и фенотипе микроорганизмов
- Конъюгация
- Трансдукция
- Трансформация
- Лекция-14
- Генная инженерия
- Клеточная инженерия
- Гибридомная технология получения моноклональных антител
- Лекция-15 эмбриогенетическая инженерия.
- Клонирование эмбрионов млекопитающих
- Химерные животные
- Трансгенные животные
- Лекция-30
- Изменчивость и методы ее изучения
- Виды изменчивости
- Методы изучения изменчивости
- Вариационный ряд и его построение
- 9. Распределение сухостойных хорош черно-пестрой породы
- Статистические показатели для характеристики совокупности
- 10. Определение основных статистических величин способом
- Вычисление статистических показателей для малых выборок
- 12. Статистические показатели суммарного эффекта фагоцитоза
- Оценка достоверности разности между средними арифметическими двух выборочных совокупностей
- Типы распределения
- Пуассона
- Критерий хи-квадрат (х2)
- 16. Соответствие фактического распределения семейств теоретически ожидаемому (биномиальному)
- 18. Стандартные значения критерия %
- Изучение связи между признаками
- 20. Определение г для малых выборок
- Дисперсионный анализ
- Лекция-16 мутационная изменчивость.
- Классификация мутаций
- Хромосомные мутации
- Механизм образования числовых и структурных аномалий кариотипа
- Генные мутации
- Лекция-17 индуцированный мутагенез.
- Генетические последствия загрязнения окружающей среды и защита животных от мутагенов
- Антимутагены
- Лекция-18
- Раскрытие сложной структуры гена
- Влияние генов на развитие признаков
- Дифференциальная активность генов на разных этапах онтогенеза
- Взаимодействие ядра и цитоплазмы в развитии
- Регуляция синтеза иРнк и белка
- Влияние среды на развитие признаков
- Генетика популяций
- Популяция и «чистая линия»
- Структура свободно размножающейся популяции. Закон харди - вайнберга
- Основные факторы генетической эволюции в популяциях
- Влияние инбридинга на выщепление рецессивных летальных и полулетальных генов
- 31. Формы уродств в потомстве быка Бурхана 6083
- Генетический груз в популяциях животных
- Генетическая адаптация и генетический гомеостаз популяций
- Генетические основы гетерозиса
- Лекция-20
- Глава 13 группы крови и биохимический полиморфизм
- 32. Системы генетических групп крови
- Наследование групп крови
- 33. Уточнение отцовства по группам крови
- Биохимический полиморфизм
- 34. Некоторые биохимические полиморфные системы
- Лекция-18
- Генетические основы иммунитета
- Структура иммуноглобулинов
- Генетика иммуноглобулинов
- Лекция-19 генетический контроль иммунного ответа
- Главный комплекс гистосовмести мости (мнс)
- Связь мне и других антигенов гистосовместимости с болезнями
- 38. Взаимосвязь аллелей комплекса в с заболеваемостью кур md, % (по Hansen и др.)
- Первичные (врожденные) дефекты иммунной системы
- Лекция-24
- Генетические аномалии у сельскохозяйственных животных
- Генетические аномалии
- Наследственно-средовые аномалии
- Генетический анализ в изучении этиологии врожденных аномалий
- Простой аутосомный рецессивный тип наследования
- Лекция-25 аутосомный доминантный тип наследования
- Сцепленный с х-хромосомой тип наследования
- 42. Сцепленный с х-хромосомой тип наследования
- Мультифакториальное наследование
- Аномалии у сельскохозяйственных животных, обусловленные мутациями генов
- 43. Список генетически обусловленных аномалий у крупного рогатого скота
- 46. Список генетически обусловленных аномалий у овец
- 47. Наследственные дефекты, встречающиеся
- Распространение аномалий хромосом в популяциях животных
- Числовые и структурные мутации кариотипа и фенотипические аномалии животных
- 48. Типы центрических слияний (транслокаций)
- 50. Продолжительность сервис-периода
- 52. Срввнение снижения воспроизводительной способности
- 54. Хромосомные аберрации в разных линиях кур (по Блому, 1974)
- Лекция-26
- Глава 16 болезни с наследственной предрасположенностью
- Генетическая устойчивость и восприимчивость к бактериальным болезням
- Генетическая устойчивость и восприимчивость к гельминтозам
- Генетическая устойчивость и восприимчивость к протозоозам
- Генетическая устойчивость и восприимчивость к клещам
- Генетическая обусловленность респираторных болезней
- Лекция-27 генетическая обусловленность болезней желудочно-кишечного тракта
- Болезни обмена веществ
- Роль наследственности в предрасположенности животных к болезням конечностей
- 74. Чвстотв болезней и деформация копыт у коров различного происхождения, % (по Косолвпикову)
- Роль наследственности в предрасположенности к бесплодию
- Роль наследственности в предрасположенности к стрессу
- Влияние факторов среды на устойчивость к болезням
- Лекция-28
- Учет врожденных аномалий и болезней. Методы генетического анализа
- Повышение наследственной устойчивости животных к болезням
- Оценка генофонда пород
- Наследуемость и повторяемость устойчивости к заболеваниям
- 80. Коэффициент наследуемости устойчивости (%) к некоторым болезням
- Массовый отбор на резистентность
- Комплексная оценка генофонда семейств, линий и потомства производителей
- Лекция-29 показатели отбора при селекции на устойчивость к болезням
- Селекция животных на устойчивость к болезням
- Непрямая селекция на резистентность
- Импульсно-циклический способ разведения по линиям
- Мероприятия по повышению устойчивости к болезням
- Словарь терминов
- Глава 2. Цитологические осоты наследственности. А. И. Жмгачев 9
- Глава 4. Хромосомная теория наследственности. Г. А. Назарова 51
- Глава 6. Молекулярные основы наследственности. Г. А. Назарова .... 74
- Глава 7. Генетика микроорганизмов. Г. А. Назарова 91
- Глава 8. Биотехнология. Г. А. Назарова, в. Л. Петухов 103
- Глава 11. Генетические основы онтогенеза. Г. А. Назарова 178
- Глава 12. Генетика популяций. А. И. Жнгачев 196
- Глава 14. Генетические основы иммунитета. В. Л. Лопухов 228