Химическая кинетика
Химическая кинетика– раздел химии, задачей которого является объяснение качественных и количественных изменений химических процессов, происходящих во времени. Фундамент химической кинетики был заложен Я.Г. Вант-Гоффом (1852–1911) и С. А. Аррениусом (1859–1927) в 80-х годах XIX в. Обычно общую задачу химической кинетики разделяют на две, более конкретных:
выявление механизма реакции – установление элементарных стадий процесса и последовательности их протекания (качественные изменения);
количественное описание химических реакций – установление строгих соотношений, которые позволяют рассчитывать изменение количеств исходных реагентов и продуктов по мере протекания реакции.
Таким образом, химическую кинетику можно определить как учение о скоростях и механизмах химических реакций.
Кинетические уравнения (с учетом механизма реакции) получают только экспериментально. Установление механизмов реакций подразумевает их классификацию по молекулярности, которая определяется числом молекул, участвующих в элементарном акте. С этой точки зрения различают мономолекулярные,бимолекулярные,тримолекулярныереакции. Доказано, что столкновение более, чем трех молекул одновременно практически невозможно.
Основным понятием в химической кинетике является понятие скорости химической реакции.
Скорость химической реакции определяется количеством вещества, прореагировавшего в единицу времени в единице объема. Скорость реакции зависит от природы реагирующих веществ от условий, в которых реакция протекает. Важнейшими из них являются: концентрация, температура и присутствие катализатора.
Природа реагирующих веществ оказывает решающее влияние на скорость реакции. Так, например, водород с фтором реагируют очень энергично уже при комнатной температуре, тогда как с йодом – значительно медленнее, даже при нагревании.
Основным постулатом химической кинетики является закон действующих масс: при постоянной температуре скорость химической реакции V, протекающей при столкновении двух частиц, пропорциональна произведению концентраций CA и CB реагирующих веществ А и В:
V = k CACB, гдеk– константа скорости реакции.
Закон действующих масс был сформулирован в 1864–1867 гг. Гульдбергом и Вааге. В химических методах изменение количества реагирующих веществ определяют непосредственно. Для этого реакцию быстро останавливают (путем резкого охлаждения, разбавления и т.д.), пробу анализируют и устанавливают в ней содержание реагента или продукта. В физико-химических методах скорость реакции определяют по изменению давления в закрытой системе, по изменению выделившегося газа, по изменению электрической проводимости и т.д. Зависимость скорости реакции от температуры была описана С. Аррениусом, который установил, что увеличение температуры приводит к увеличению числа активных молекул. Активными молекулами оказываются только такие, которые приобретают строго определенную для данной реакции энергию, превышающую среднюю энергию всех молекул. Такой минимальный избыток энергии (по сравнению со средней энергией), которым должны обладать частицы реагента для осуществления химического превращения, называетсяэнергией активации E.
Рассмотрение механизмов химических реакций в химической кинетике предполагает, что для осуществления реакции каждая пара молекул проходит через промежуточную неустойчивую конфигурацию, называемую активированным комплексом, распад которого приводит к образованию конечного продукта, например, протекание реакции типа A2+B2 = 2AB изображается схемой:
В общем случае в этой промежуточной конфигурации некоторые связи реагирующих молекул испытывают напряжение и разрываются в процессе взаимодействия, причем одновременно образуются новые связи. Изменение потенциальной энергии, сопровождающее реакцию, иллюстрирует рис. 4.8, где Eа– энергия активации, необходимая для образования активированного комплекса из молекул исходных реагентов.
Рис. 4.8.Изменение энергии реагирующей системы
- Оглавление
- Естествознание в системе науки и культуры
- Принципы, формы и методы научного познания
- Общие принципы научного познания
- Формы научного познания
- Методы научного исследования
- Особая роль математики в естествознании
- Естествознание и научная картина мира
- Понятие научной картины мира
- Историческая смена физических картин мира
- Панорама современного естествознания
- Естествознание в аспекте научно-технической революции
- Тенденции развития естествознания
- Проблема классификации наук
- История естествознания
- Зарождение эмпирического научного знания
- Античная наука
- Александрийский период развития науки
- Развитие науки арабских и среднеазиатских народов в средние века
- Период схоластики
- Научная революция XVI–XVII вв.
- Революция в астрономии
- Экспериментальный метод Галилея
- Становление физики как самостоятельной науки
- Революция в математике
- Развитие научных методов в естествознании
- Развитие естествознания в хviii в.
- Физические концепции естествознания
- Механистическая картина мира
- Принцип относительности Галилея
- Механика Ньютона
- Характерные особенности механистической картины мира
- Развитие концепций термодинамики и статистической физики
- Вещественная и корпускулярная теории теплоты
- Необратимость времени в термодинамике
- Первое и второе начала термодинамики
- Принцип возрастания энтропии, хаос и порядок
- Статистический подход к описанию макросистем
- Развитие концепций электромагнитного поля
- "Экспериментальные исследования по электричеству" Фарадея
- Теория электромагнетизма Максвелла
- Корпускулярная и континуальная концепция описания природы
- Развитие представлений о свете
- Концепция дальнодействия и близкодействия
- Развитие концепций пространства и времени в специальной теории относительности
- Принцип относительности
- Преобразование Лоренца
- Релятивистская механика
- Четырехмерное пространство-время в специальной теории относительности
- Экспериментальное подтверждение специальной теории относительности
- Общая теория относительности
- Принцип эквивалентности
- Экспериментальное подтверждение общей теории относительности
- Философские выводы из теории относительности
- Симметрия пространства и времени и законы сохранения
- Мегамир в его многообразии и единстве
- Галактики и структура Вселенной
- Солнечная система
- Концепция расширения Вселенной
- Эволюция Вселенной
- Концепция большого взрыва
- Принципы организации микромира
- Развитие концепции атомизма
- Теория атома Бора – мост от классики к современности
- Корпускулярно-волновые свойства микрочастиц
- Принцип неопределенности
- Принцип дополнительности
- Описание микрообъектов в квантовой механике
- Принцип суперпозиции
- Принцип тождественности
- Принципы причинности и соответствия в квантовой механике
- Фундаментальные взаимодействия в природе
- Гравитационное взаимодействие
- Электромагнитное взаимодействие
- Сильное взаимодействие
- Слабое взаимодействие
- Элементарные частицы
- Характеристики элементарных частиц
- Классификация элементарных частиц
- Структурные уровни организации материи
- Закон постоянства состава
- Закон простых кратных отношений
- Гипотеза Авогадро
- Атомно-молекулярное учение
- Закон сохранения массы и энергии
- Периодический закон Менделеева
- Электронное строение атома
- Структура химических систем
- Теория химического строения Бутлерова
- Химическая связь
- Физико-химические закономерности протекания химических процессов
- Энергетика химических процессов
- Химическая кинетика
- Понятие о катализе и катализаторах
- Реакционная способность веществ
- Обратимые реакции и состояние химического равновесия
- Развитие химии экстремальных состояний
- Особенности биологического уровня организации материи
- Свойства живых систем
- Уровни организации живой природы
- Молекулярный уровень
- Клеточный уровень
- Органно-тканевый уровень
- Организменный уровень
- Популяционно-видовой уровень
- Биогеоценотический и биосферный уровни
- Клетка – структурная и функциональная единица живых организмов
- Клеточная теория
- Химический состав клеток
- Клеточные и неклеточные формы жизни
- Систематика живой природы
- Генетика
- Законы Менделя
- Хромосомная теория наследственности
- Изменчивость
- Генетика человека
- Генная инженерия и биоэтика
- Принципы эволюции живых систем
- Общее понятие прогресса и его проявление в живой природе
- Ламаркизм
- Дарвинизм. Эволюция путем естественного отбора
- Развитие дарвинизма. Основные факторы и движущие силы эволюции
- Доказательства эволюции живой природы
- Биохимическая эволюция
- Основные подходы к проблеме происхождения жизни
- Химическая эволюция
- Коацерватная стадия в процессе возникновения жизни
- Начальные этапы развития жизни на Земле
- Происхождение и эволюция человека
- Положение человека в системе животного мира
- Отряд приматов
- Происхождение человека
- Этапы эволюции человека
- Биосфера и человек
- Концептуальные подходы к изучению биосферы
- Многообразие живых организмов – основа организации и устойчивости биосферы
- Биогеохимические циклы в биосфере
- Эволюция биосферы
- Ноосфера. Путь к единой культуре.
- Охрана биосферы
- Влияние космоса на земные процессы
- Современная наука о человеке
- Здоровье и работоспособность человека
- Физиология человека
- Мозг и сознание
- Сознание – функция мозга
- Смерть мозга и морально-этические и правовые проблемы
- Структура субъективного мира человека
- Эмоции, чувства и интеллект
- Сознание и самосознание
- Сознательное и бессознательное
- Творчество
- Системный подход в естествознании
- Принципы эволюции систем
- Самоорганизация в живой и неживой природе
- Заключение
- Литература