Реакционная способность веществ
Как мы уже видели, способность к взаимодействию различных химических реагентов (реакционная способность) определяется не только их атомно-молекулярной структурой, но и условиями протекания химических реакций, к которым прежде всего относятся термодинамические факторы, характеризующие зависимость реакций от температуры, давления и некоторых других условий. В еще большей степени характер и особенно скорость реакций зависят от кинетических условий, которые определяются, прежде всего, наличием катализатора.
Еще в конце XIX в. изучалось влияние растворителей на ход химических реакций. Выяснилось, что одна и та же реакция в разных растворителях протекает по-разному – с разными скоростями и выходом конечного продукта. Иногда растворитель оказывается инициатором реакции, – без него она просто не начиналась бы. В настоящее время считается общепринятым, что растворитель – непосредственный участник всякой химической реакции, является в одних случаях ее катализатором, т. е. веществом, ускоряющим реакции, а в других – ингибитором – веществом, снижающим скорость химического процесса.
Опыты показывают, что стенки реактора участвуют в химическом взаимодействии реагентов.
На интенсивность химических процессов оказывают влияние случайные примеси. Вещества различной степени чистоты проявляют себя в одних случаях как более активные реагенты, в других – как инертные. Примеси могут оказывать как каталитическое, так и ингибиторное действие. Поэтому для управления химическим процессом в реагирующие вещества вносят те или иные добавки.
Таким образом, влияние растворителей, стенок реактора и случайных примесей на ход химических реакций может быть сведено и к катализу, т. е. к положительному воздействию на химический процесс, и к ингибированию, сдерживающему процесс.
Говоря о катализаторах, следует отметить особый тип катализаторов, созданных самой природой, ферменты, или биокатализаторы. Без них возникновение и эволюция жизни на Земле были бы невозможны.
Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, они не тождественны им, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире наталкиваются на серьезные ограничениями. Речь может идти только о моделировании некоторых функций ферментов и использования этих моделей для теоретического анализа деятельности живых систем, а также частично – практического применения выделенных ферментов для ускорения некоторых химических реакций.
Тот факт, что катализ играл решающую роль в переходе от химических систем к биологическим в процессе биохимической эволюции (возникновения жизни на Земле), в настоящее время подтвержден многими данными и аргументами. Наиболее убедительные результаты связаны с опытами по самоорганизации химических систем, которые наблюдали наши соотечественники Б.П. Белоусов и А.М. Жаботинский. Такие реакции сопровождаются образованием специфических пространственных и временных структур за счет поступления новых и удаления использованных реагентов. Важное значение в указанных реакциях играют каталитические процессы. Роль этих процессов усиливается по мере усложнения состава и структуры химических систем. На этом основании некоторые ученые напрямую связывают химическую эволюцию с самоорганизацией и саморазвитием каталитических систем.
- Оглавление
- Естествознание в системе науки и культуры
- Принципы, формы и методы научного познания
- Общие принципы научного познания
- Формы научного познания
- Методы научного исследования
- Особая роль математики в естествознании
- Естествознание и научная картина мира
- Понятие научной картины мира
- Историческая смена физических картин мира
- Панорама современного естествознания
- Естествознание в аспекте научно-технической революции
- Тенденции развития естествознания
- Проблема классификации наук
- История естествознания
- Зарождение эмпирического научного знания
- Античная наука
- Александрийский период развития науки
- Развитие науки арабских и среднеазиатских народов в средние века
- Период схоластики
- Научная революция XVI–XVII вв.
- Революция в астрономии
- Экспериментальный метод Галилея
- Становление физики как самостоятельной науки
- Революция в математике
- Развитие научных методов в естествознании
- Развитие естествознания в хviii в.
- Физические концепции естествознания
- Механистическая картина мира
- Принцип относительности Галилея
- Механика Ньютона
- Характерные особенности механистической картины мира
- Развитие концепций термодинамики и статистической физики
- Вещественная и корпускулярная теории теплоты
- Необратимость времени в термодинамике
- Первое и второе начала термодинамики
- Принцип возрастания энтропии, хаос и порядок
- Статистический подход к описанию макросистем
- Развитие концепций электромагнитного поля
- "Экспериментальные исследования по электричеству" Фарадея
- Теория электромагнетизма Максвелла
- Корпускулярная и континуальная концепция описания природы
- Развитие представлений о свете
- Концепция дальнодействия и близкодействия
- Развитие концепций пространства и времени в специальной теории относительности
- Принцип относительности
- Преобразование Лоренца
- Релятивистская механика
- Четырехмерное пространство-время в специальной теории относительности
- Экспериментальное подтверждение специальной теории относительности
- Общая теория относительности
- Принцип эквивалентности
- Экспериментальное подтверждение общей теории относительности
- Философские выводы из теории относительности
- Симметрия пространства и времени и законы сохранения
- Мегамир в его многообразии и единстве
- Галактики и структура Вселенной
- Солнечная система
- Концепция расширения Вселенной
- Эволюция Вселенной
- Концепция большого взрыва
- Принципы организации микромира
- Развитие концепции атомизма
- Теория атома Бора – мост от классики к современности
- Корпускулярно-волновые свойства микрочастиц
- Принцип неопределенности
- Принцип дополнительности
- Описание микрообъектов в квантовой механике
- Принцип суперпозиции
- Принцип тождественности
- Принципы причинности и соответствия в квантовой механике
- Фундаментальные взаимодействия в природе
- Гравитационное взаимодействие
- Электромагнитное взаимодействие
- Сильное взаимодействие
- Слабое взаимодействие
- Элементарные частицы
- Характеристики элементарных частиц
- Классификация элементарных частиц
- Структурные уровни организации материи
- Закон постоянства состава
- Закон простых кратных отношений
- Гипотеза Авогадро
- Атомно-молекулярное учение
- Закон сохранения массы и энергии
- Периодический закон Менделеева
- Электронное строение атома
- Структура химических систем
- Теория химического строения Бутлерова
- Химическая связь
- Физико-химические закономерности протекания химических процессов
- Энергетика химических процессов
- Химическая кинетика
- Понятие о катализе и катализаторах
- Реакционная способность веществ
- Обратимые реакции и состояние химического равновесия
- Развитие химии экстремальных состояний
- Особенности биологического уровня организации материи
- Свойства живых систем
- Уровни организации живой природы
- Молекулярный уровень
- Клеточный уровень
- Органно-тканевый уровень
- Организменный уровень
- Популяционно-видовой уровень
- Биогеоценотический и биосферный уровни
- Клетка – структурная и функциональная единица живых организмов
- Клеточная теория
- Химический состав клеток
- Клеточные и неклеточные формы жизни
- Систематика живой природы
- Генетика
- Законы Менделя
- Хромосомная теория наследственности
- Изменчивость
- Генетика человека
- Генная инженерия и биоэтика
- Принципы эволюции живых систем
- Общее понятие прогресса и его проявление в живой природе
- Ламаркизм
- Дарвинизм. Эволюция путем естественного отбора
- Развитие дарвинизма. Основные факторы и движущие силы эволюции
- Доказательства эволюции живой природы
- Биохимическая эволюция
- Основные подходы к проблеме происхождения жизни
- Химическая эволюция
- Коацерватная стадия в процессе возникновения жизни
- Начальные этапы развития жизни на Земле
- Происхождение и эволюция человека
- Положение человека в системе животного мира
- Отряд приматов
- Происхождение человека
- Этапы эволюции человека
- Биосфера и человек
- Концептуальные подходы к изучению биосферы
- Многообразие живых организмов – основа организации и устойчивости биосферы
- Биогеохимические циклы в биосфере
- Эволюция биосферы
- Ноосфера. Путь к единой культуре.
- Охрана биосферы
- Влияние космоса на земные процессы
- Современная наука о человеке
- Здоровье и работоспособность человека
- Физиология человека
- Мозг и сознание
- Сознание – функция мозга
- Смерть мозга и морально-этические и правовые проблемы
- Структура субъективного мира человека
- Эмоции, чувства и интеллект
- Сознание и самосознание
- Сознательное и бессознательное
- Творчество
- Системный подход в естествознании
- Принципы эволюции систем
- Самоорганизация в живой и неживой природе
- Заключение
- Литература