logo
пособие_КСЕ

Развитие химии экстремальных состояний

Как мы уже знаем из рассмотрения каталитических реакций, под действием катализатора происходит ослабление исходных химических связей. Подобное действие можно ожидать при тепловом или радиационном воздействии, приводящем к повышению реакционной способности веществи ускорению хода реакций. Вопросами энергетической активизации реагента занимается химияэкстремальных состояний, которая включаетплазмохимию,радиационную химию,химию высоких энергий,химию высоких давленийивысоких температур.

Плазмохимия изучает процессы в низкотемпературной плазме. В плазмохимии рассматриваются процессы при температурах от+1000Cдо+10000С . Такие процессы характеризуются возбужденным состоянием частиц, столкновениями молекул с заряженными частицами и, что особенно важно, очень высокими скоростями реакций. В плазмохимических процессах скорость перераспределения химических связей очень высока: длительность элементарных актов химических превращений составляет около10–13спри почти полном отсутствии обратимости реакции. Метановый плазмотрон с производительностью75 тацетилена в сутки имеет сравнительно крохотные размеры: длину65 сми диаметр15 см. Такой плазмотрон заменяет целый огромный завод. При температуре+З0003500Cза одну десятитысячную долю секунды 80% метана превращается в ацетилен. Степень использования энергии достигает 90–95%, а энергозатраты составляют не более3 кВт чна1 кгацетилена.

Относительно недавно – в 1970-х годах – созданы плазменные сталеплавильные печи, выдающие высококачественный металл. Именно таким печам принадлежит будущее. Разработаны методы ионно-плазменной обработки поверхности инструментов, износостойкость которых увеличивается в несколько раз.

Плазмохимия позволяет синтезировать такие ранее неизвестные материалы, как металлобетон, в котором в качестве связующего используется сталь, чугун, алюминий. При сплавлении частиц горной породы благодаря прочному сжатию их с металлом образуется металлобетон, превосходящий по прочности обычный бетон на сжатие в 10 раз и на растяжение в 100 раз.

Радиационная химия – сравнительно молодая отрасль, ей немного более 40 лет. Первые опыты радиационной химии были связаны с облучением полиэтилена гамма-лучами. Прочность полиэтилена при этом существенно возросла. В настоящее время радиационная химия изучает превращение самых разнообразных веществ под действием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы.

Наиболее важными процессами радиационно-химической технологии являются полимеризация, вулканизация, производство композиционных материалов, в том числе композиций на древесной основе, закрепление лаков и других материалов на поверхности дерева и металла, получение полимербетонов путем пропитки обычного бетона тем или иным мономером с последующим облучением. Такие бетоны имеют в четыре раза более высокую прочность, обладают водонепроницаемостью и высокой коррозийной стойкостью.

Принципиально новой и исключительно важной областью химии экстремальных состояний является самораспространяющийся высокотемпературный синтез тугоплавких и керамических материалов. Обычно крупномасштабное производство таких материалов осуществляется методом порошковой металлургии, суть которого заключается в прессовании и сжатии при высокой температуре металлических порошков. При этом температура должна составлять+12002000C , а процесс спекания длится несколько часов. Гораздо проще реализуется самораспространяющийся синтез, основанный на реакции горения одного металла в другом или металла в азоте, углероде, кремнии и т.п. Чаще всего процесс горения представляется в виде соединения кислорода с горючим веществом: углем, нефтепродуктами, древесиной. В химии принято считать горение реакцией окисления горючего вещества, что с позиции окислительно-восстановительных реакций означает перемещение электронов от атомов восстановителя горючего тела к атомам окислителя кислорода. С этой точки зрения горение возможно не только в кислороде, но и в других окислителях.

Самораспространяющийся высокотемпературный синтез – тепловой процесс горения в твердых телах. Он представляет собой, например, горение порошка титана в порошке бора или порошка циркония в порошке кремния. В результате такого синтеза получены сотни тугоплавких соединений превосходного качества: карбиды металлов, бориды, алюминиды, селениды.