Эту хуйню делали:
Ступников Филипп 1-10 билеты
Константин Самородов 11-21 билиты
Катя Осипова 21-24(1,2)
Михаил Першиков 24(3,4)25,26,27
Катя Отрощенко 28-31 (1,2)
Константин Горбунов 31(3,4),32,33,34
Ната Хитрова 35, 36, 37, 38 (1,2)
Полина Кретова 38(3,4),39,40,41
Проклинайте и боготворите нас
билет № 1
Общее понятие об обмене веществ. Катаболизм и анаболизм. Основные этапы. Значение АТФ и других макроэргических соединений в обеспечении энергией процессов жизнедеятельности.
Производные моносахаридов, образующиеся в организме (фосфорные эфиры, уроновые кислоты, аминосахара), их биологическое значение.
Биосинтез холестерина. Схема процесса. Атеросклероз и связь нарушений метаболизма холестерина и липопротеинов.
Минеральные вещества крови (фосфор, кальций, натрий, калий, железо) Участие в обмене.
1
Общее понятие об обмене веществ. Катаболизм и анаболизм. Основные этапы. Значение АТФ и других макроэргических соединений в обеспечении энергией процессов жизнедеятельности.
(Северина с. 265-296 + 108-118)
Живые организмы находятся в постоянной и неразрывной связи с окружающей средой. Эта связь осуществляется в процессе обмена веществ. Обмен веществ включает 3 этапа: поступление в-в в организм, метаболизм и выделение конечных продуктов обмена. Внутриклеточный метаболизм включает 2 типа реакций: катаболизм и анаболизм. Катаболизм– процесс расщепления(окисления) органических молекул до конечных продуктов: СО2,H2Oи мочевина . Реакции катаболизма сопровождаются выделением энергии, необходимой для ж-ти орг. Процессы катаболизма сопровождаются потреблением О2, который необходим для реакций окисления.
Этапы катаболизма:1-й этап, макромолекулы расщепляются до своих мономеров, полисахариды распадаются до моносахаридов; жиры — до глицерина и жирных кислот; белки — до аминокислот. Этот этап является специфическим, катализируется ферментами класса гидролаз. Этот этап энергетической ценности не имеет, выделяется менее 1% энергии в виде тепла. 2-й этап, специфическим путь катаболизма. Каждый из мономеров превращается в одну из карбоновых кислот. Моносахариды, глицерин и некоторые аминокислоты превращаются в пируват. Жирные кислоты и часть аминокислот — в ацетил-КоА 2-й этап происходит в митохондриях и цитозоле клеток, энергия выделяется в виде тепла и используется на синтез АТФ. 3-этап. Общий, неспецифический. На этом этапе пируват в процессе окислительного декарбоксилирования превращается в ацетил-КоА. Ацетил-КоА, оксалоацетат и 2-оксоглутарат окисляются в цикле Кребса. За один оборот цикла Кребса образуются 2 молекулы С02,. Водород, полученный в де-гидрогеназных реакциях, присоединяется к НАД^ и ФАД. с образованием НАДН и ФАДН2, которые окисляются в дыхательной цепи. При этом образуется вода, а в энергия используется АТФ, тепло, р-ции локализованы в митохондриях.
Анаболизм– это процессы синтеза сложных макромолекул из простых, с использованием энергии, выработанной в процессах катаболизма.
В живых организмах есть целая группа органических фосфатов, гидролиз которых приводит к освобождению большого количества свободной энергии. Такие соединения называют высокоэнергетическими фосфатами.(АТФ,АДФ,Креатинфосфат,ацетилфосфат) К группе высокоэнергетических фостфатов кроме АТФ, относят енолфосфаты, ангедриды и фосфогуанидины. АТФ – молекула, богатая Э, поскольку она содержит 2 фосфоангидридные связи (β,γ). При гидролизе концевой фосфатной связи АТФ превращается в АДФ иPн. При этом выделяется 7,3 ккал/моль свободной Э.
Образование АТФ в процессе метаболизма идет двумя путями – окислительного и субстратного фосфорилирования. (дых цепь ЦТК гликолиз). Возникновение макроэргической связи в момент окисления субстрата с дальнейшей активацией неорганического фосфата и его переносом на АДФ с образованием АТФ называют субстратным фосфорилированием (10% всей энергии). Реакцией субстратного фосфорилирования являются две реакции гликолиза – окисление 3-фосфоглицеринового альдегида в 1,3-дифосфоглицериновую кислоту, и окисление 2-фосфоглицериновой кислоты в 2-фосфоэнолпировиноградную кислоту; а также одна реакция ЦТК - окисление сукцинил-КоА в янтарную кислоту. Основная масса АТФ образуется путем окислительного фосфорилирования. В процессе окислительного фосфорилирования окисляемый субстрат участия не принимает, а активирование неорганического фосфата сопряжено с переносом электронов и протонов водорода с коферментов дегидрогеназ (принимающих участие в окислении субстрата) к молекулярному кислороду. Сопряжение окисления с фосфорилированием АДФ и последующим образованием АТФ называют окислительным фосфорилированием. Процессы сопряжения окисления и фосфорилирования идут в дыхательной цепи. АТФ может участвовать в фосфорилировании глюкозы, глицерина; выступать в роли донора энергии в эндоергонических процессов; использоваться в мышечном сокращении, активном транспорте веществ. Некоторые биосинтетические реакции могут протекать при участии аналогов АТФ: гуанозинтрифосфат ГТФ, урединтрифосфат УТФ и цитидинтрифосфат ЦТФ. Все эти нуклеотиды, образуются при использовании свободное Э концевой Ф группы АТФ. Использование АТФ как источника энергии возможно при условии непрерывного синтеза АТФ из АДФ за счет энергии окисления орг. соединений.
2
Производные моносахаридов, образующиеся в организме (фосфорные эфиры, уроновые кислоты, аминосахара), их биологическое значение.
Моносахариды – производные многоатомных спиртов, содержащие карбонильную группу. В зависимости от положения карбонильной группы моносахариды разделяют на альдозы и кетозы. Альдозы содержат НС=О группу, а кетозы сод. кетонную группу С=О.
Фосфорные эфиры: 1) глюкозо-6-фосфат– активная форма глюкозы, с нее начинается превращения углеводов. Глюкоза + АТФ под действием гексокиназы превращается в глюкозо6фосфат, глюкозо1фосфат. Глю6ф идет на синтез гликогена. При распаде гликогена образуется глюкозо1фосфат и из нее глкозо6фосфат. Глюкозо6фосфат участвует в гликолизе, в результате чего образуется ПВК. С глюкозо6фосфата начинается ПФЦ, в результате чего образуется рубозо5фосфат. 2)Рибозо5фосфат– образуется в пирофосфатном цикле, входит в структуру мононуклеотидов – НАД, ФАД, АТФ, ДНК, РНК. Рибозо5фосфат + АТФ образуется фосфорибозилпирофосфат, который идет на синтез пуриновых азотистых оснований. 3)Уроновая кислота – глюкуроновая кислота, в 6 положении СООН группа. 4) Аминосахар – глюкоозамин, фруктозамин, галактозамин. Уроновые кислоты и аминосахара являются структурными компонентами гликозаминогликанов – высокомолекулярные соединения, мономером является дисахаридная единица, которая представлена уроновой кислотой, которая соединена альфа-1,3 гликозидной связью с аминосахаром.
Аминосахара: Глюкозамин Галактозамин
- Эту хуйню делали:
- 3 Северина с 440-448
- 4 Добавить серу
- 2 Северина с 704
- 3 Не нашел
- 1 Северина с 140-170
- Применение ингибиторов ферментов
- 1 Северина с 143-146
- 1 Северина с 146-149
- Вопрос 1
- Вопрос 2
- Вопрос 3
- Вопрос 4
- Вопрос 1
- Вопрос 2
- Вопрос 3
- Вопрос 4
- 136,137. Желудочный сок, формы кислотности.
- Вопрос 1
- Вопрос 2
- 128. Содержание глюкозы в крови, возрастные особенности.
- Вопрос 3
- Вопрос 4
- Вопрос 1
- Вопрос 2
- Вопрос 3
- Вопрос 4
- 138. Физико-химические показатели мочи, возрастные особенности.
- Вопрос 1
- Вопрос 2
- Вопрос 3
- Вопрос 4
- 139. РН мочи в норме и при патологии.
- Вопрос 1
- 17. Процессы превращения а/к в кишечнике под влиянием гнилостных бактерий. Обезвреживание ядовитых продуктов.
- Вопрос 2
- Вопрос 3
- Вопрос 4
- 140. Пигменты мочи и их происхождение.
- Вопрос 1
- Вопрос 2
- Вопрос 3
- Вопрос 4
- 141. Органические вещества мочи.
- Вопрос 1
- Вопрос 2
- Вопрос 3
- Вопрос 4
- 142. Азотсодержащие вещества мочи.
- Вопрос 1
- 19. Биосинтез белков. Роль нуклеиновых кислот.
- Вопрос 2
- Вопрос 3
- Вопрос 4
- Вопрос 1
- 19. Биосинтез белков. Роль нуклеиновых кислот.
- 20. Биосинтез днк. Повреждение и репарация днк.
- 21. Транскрипция, генетический код, процессинг рнк.
- Вопрос 2
- Вопрос 3
- 92,93. Витамины. Классификация, участие в обмене веществ, а- гипо- гипер- витаминозы.
- Вопрос 4
- 143. Индикан мочи.
- Вопрос 1
- 24. Дезаминирование, трансаминирование, декарбоксилирование.
- 25. Связь трансаминирования и дезаминирования. Непрямое дезаминирование.
- Вопрос 2
- Вопрос 2
- Вопрос 4
- 144. Парные соединения мочи.
- 2) Дезаминирование глутамата
- 1)Трансаминирование
- 2)Окислительное дезаминирование глутамата
- Вопрос 1
- Вопрос 2.Биосинтез триацилглицеринов, способы синтеза, последовательность реакций. Роль инсулина, адреналина, глюкогона в регуляции синтеза. Значение процесса.
- Вопрос 3. Гормоны и их классификация. Представление об основных механизмах гормональной регуляции метаболизма.
- Гормон паращитовидной железы
- Причины
- Лечение
- Тиоредоксин: принцип действия
- Тиоредоксин: роль в организме
- 2. Депонирование и мобилизация жиров в жировой ткани.
- 3. Ферменты сыворотки крови
- 2.Активные формы кислорода
- Гомеостатические функции почек
- Основные функции гормонов
- 4. Мышечная ткань
- Билет №35.
- Билет №36
- Билет №37
- Билет №38
- 3. Синтез гема и его регуляция. Нарушение синтеза гема, Порфирии. Обмен железа: источники, транспорт, депонирование.
- 4. Возрастные особенности состава желудочного сока.
- 39 Билет
- 40 Билет
- 3) Белковая система
- 41 Билет